Critical Properties of Bose-Einstein Condensates

玻色-爱因斯坦凝聚体的关键性质

基本信息

项目摘要

The goal of the project is to understand the critical properties of homogeneous Bose-Einstein condensates above and, especially, below the critical point by applying field-theoretic methods of many-body physics. In both regimes we shall analyze the effect of an arbitrarily weak repulsive two-particle interaction on the critical temperature and the specific heat. Furthermore, below the transition, we want to investigate the influence of phase fluctuations upon the superfluid properties of homogeneous Bose-Einstein condensates. The same field-theoretic methods will then be applied to Bose-Einstein condensates trapped in optical lattices. There the periodicity leads to a quasi-free behavior due to Bloch´s theorem. In the lattice systems one can increase the effective repulsive interaction between the bosons which leads to a state with uncorrelated phases behaving like a Mott insulator. In the neighborhood of any of these transitions, perturbation expansions of physical quantities suffer from ubiquitous infrared divergencies so that the effective expansion parameter becomes infinite. We master this problem with the help of variational perturbation theory, a method developed recently in our group to determine the strong-coupling limit of divergent weak-coupling expansions.
该项目的目的是通过应用多体物理的场论方法,了解均匀玻色-爱因斯坦凝聚体在临界点以上,特别是在临界点以下的临界性质。在这两种情况下,我们将分析任意弱排斥性两粒子相互作用对临界温度和比热的影响。此外,在过渡下,我们想研究相波动对均匀玻色-爱因斯坦凝聚体超流体性质的影响。同样的场论方法将被应用于光晶格中的玻色-爱因斯坦凝聚体。在那里,由于布洛赫定理,周期性导致了准自由行为。在晶格系统中,人们可以增加玻色子之间的有效排斥相互作用,从而导致具有不相关相的状态,其行为类似于莫特绝缘子。在这些跃迁的邻域中,物理量的微扰展开受到无处不在的红外散度的影响,使得有效展开参数变得无限大。我们借助变分摄动理论来解决这个问题,变分摄动理论是我们小组最近发展的一种确定发散弱耦合展开的强耦合极限的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hagen Kleinert其他文献

Professor Dr. Hagen Kleinert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hagen Kleinert', 18)}}的其他基金

Applications of generalized statistics in critical phenomena and financial markets
广义统计在关键现象和金融市场中的应用
  • 批准号:
    210762288
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Renormalization group analysis of superconductors at zero field: statics and dynamics
零场超导体的重正化群分析:静力学和动力学
  • 批准号:
    80422057
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deconfined quantum criticality and the stability of U (1) spin liquids
U(1)自旋液体的解域量子临界性和稳定性
  • 批准号:
    23896453
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Interplay between height-fluctuations, defects and the electronic degrees of freedom in carbon nanotubes and graphene
碳纳米管和石墨烯的高度波动、缺陷和电子自由度之间的相互作用
  • 批准号:
    5409265
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Lösung geschlossener Systeme von Schwinger-Dyson-Gleichungen in verschiedenen Quantenfeldtheorien
求解各种量子场论中的施温格-戴森方程的闭合系统
  • 批准号:
    5379881
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了