Well-posedness and stability of incompressible and compressible flows with phase transition

具有相变的不可压缩和可压缩流动的适定性和稳定性

基本信息

  • 批准号:
    16H03945
  • 负责人:
  • 金额:
    $ 10.65万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ダルムシュタッド工科大学(ドイツ)
达姆施塔特工业大学(德国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Necessary and sufficient condition on initial data for solutions in the Serrin class of the Navier-Stokes equations
纳维-斯托克斯方程 Serrin 类解的初始数据的充分必要条件
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Senjo Shimizu
  • 通讯作者:
    Senjo Shimizu
Navier-Stokes方程式の強解の正則性と漸近挙動
纳维-斯托克斯方程强解的正则性和渐近行为
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岡田晃;小薗英雄;清水扇丈
  • 通讯作者:
    清水扇丈
Maximal regularity and nonlinear PDE (RIMS共同研究(公開型)特別計画)
最大正则性与非线性PDE(RIMS联合研究(开放型)专项项目)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
U. Campania(イタリア)
U.坎帕尼亚(意大利)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shimizu Senjo其他文献

青色申告に対する更正の理由附記
添加蓝色纳税申报表更正原因
3題噺 Weylの m関数 Minkowski の問題 六角格子
3 问题 Weyl 的 m 函数 Minkowski 的问题 六角格子
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogawa Takayoshi;Shimizu Senjo;磯崎 洋
  • 通讯作者:
    磯崎 洋
Nuclear Astrophysics at RCNP
RCNP 核天体物理学
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogawa Takayoshi;Shimizu Senjo;T. Kawabata
  • 通讯作者:
    T. Kawabata
距離空間上の無限大ラプラシアンの主固有値問題
度量空间上无限拉普拉斯算子的主特征值问题
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogawa Takayoshi;Shimizu Senjo;三石史人
  • 通讯作者:
    三石史人
可積分系と美的形状の幾何
可积系统和美学形状的几何学
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogawa Takayoshi;Shimizu Senjo;梶原健司,井ノ口順一,三浦憲二郎,Wolfgang Schief
  • 通讯作者:
    梶原健司,井ノ口順一,三浦憲二郎,Wolfgang Schief

Shimizu Senjo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shimizu Senjo', 18)}}的其他基金

Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem
基于最大正则定理的符合热力学的相变流动自由边界问题
  • 批准号:
    24340025
  • 财政年份:
    2012
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

端点最大正則性原理とそのNavier-Stokes方程式への応用
端点最大正则原理及其在纳维-斯托克斯方程中的应用
  • 批准号:
    23K20804
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
圧縮性Navier-Stokes方程式の空間非一様な定常解に対する安定性解析
可压缩纳维-斯托克斯方程空间非均匀稳态解的稳定性分析
  • 批准号:
    23KJ0942
  • 财政年份:
    2023
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Large steady solutions to the free-boundary Navier-Stokes equations
自由边界纳维-斯托克斯方程的大稳态解
  • 批准号:
    2886064
  • 财政年份:
    2023
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Studentship
全空間上の圧縮性Navier-Stokes方程式の時間周期解の安定性問題
可压缩纳维-斯托克斯方程全空间时间周期解的稳定性问题
  • 批准号:
    22K13946
  • 财政年份:
    2022
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Studies on the Navier-Stokes equations by numerical methods
纳维-斯托克斯方程的数值方法研究
  • 批准号:
    22K03438
  • 财政年份:
    2022
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
End-point maximal regularity and its application to the Navier-Stokes equations
端点最大正则性及其在纳维-斯托克斯方程中的应用
  • 批准号:
    21H00992
  • 财政年份:
    2021
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Removability of time-dependent singularities in the Navier-Stokes equations
纳维-斯托克斯方程中与时间相关的奇点的可去除性
  • 批准号:
    21J14366
  • 财政年份:
    2021
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Applied mathematics master's degree - numerical methods for the incompressible Navier-Stokes equations
应用数学硕士学位 - 不可压缩纳维-斯托克斯方程的数值方法
  • 批准号:
    553966-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
  • 批准号:
    2012031
  • 财政年份:
    2020
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了