Number theory of prehomogeneous vector spaces
预齐次向量空间的数论
基本信息
- 批准号:17K05169
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2017
- 资助国家:日本
- 起止时间:2017-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rational orbits of primitive trivectors in dimension six
六维本原三向量的有理轨道
- DOI:10.2748/tmj/1552100441
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yukie;Akihiko
- 通讯作者:Akihiko
On the density theorem related to the space of non-split tri-Hermitian forms I
关于不可分裂三厄米形式空间的密度定理Ⅰ
- DOI:10.1016/j.jnt.2018.07.015
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:水澤 靖;山本 康太;Akihiko Yukie
- 通讯作者:Akihiko Yukie
Rational orbits of the space of pairs of exceptional Jordan algebras
例外乔丹代数对空间的有理轨道
- DOI:10.1016/j.jnt.2017.12.008
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Y. Kurokawa;K. Nagatomo;Y. Sakai;Ryo Kato and Akihiko Yukie
- 通讯作者:Ryo Kato and Akihiko Yukie
On the density theorem related to the space of non-split tri-Hermitian forms
关于不可分裂三埃尔米特形式空间的密度定理
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yukie;Akihiko
- 通讯作者:Akihiko
On the local density of prehomoegenous vector spaces
关于预齐次向量空间的局部密度
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Yukie;Akihiko;山本康太;Yoshinori Mizuno and Roland Matthes;平之内俊郎;Takuya Ikuta;Shigeki Akiyama;A. Yukie
- 通讯作者:A. Yukie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yukie Akihiko其他文献
Yukie Akihiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yukie Akihiko', 18)}}的其他基金
Zeta functions pf prehomogeneous vector spaces
预齐次向量空间的 Zeta 函数
- 批准号:
24340001 - 财政年份:2012
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
代数群的表示理论及其在Siegel模形式上的应用
- 批准号:12301016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数群无限维抽象表示中的若干问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
- 批准号:12126309
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
- 批准号:12126354
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
关于代数群之覆盖群朗兰兹纲领中的若干问题
- 批准号:12171422
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
半单代数群超代数的范畴O及相关研究
- 批准号:12171457
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
例外型与Cartan型单模李超代数群阶化的分类
- 批准号:12001141
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
任意特征域简约李代数简约代数群及其广义结构与表示的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
代数群与仿射Deligne-Lusztig簇
- 批准号:11922119
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
非线性代数群作用的若干问题
- 批准号:11701462
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
簡約代数群の弱近似と志村多様体の数論幾何
Shimura流形的约简代数群和算术几何的弱近似
- 批准号:
24K16884 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
実簡約代数群の表現の絡作用素に対する幾何学的構成
实数约简代数群表示的缠绕算子的几何构造
- 批准号:
24K06734 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
志村多様体の数論幾何と簡約代数群の質量公式
Shimura流形的算术几何和约化代数群的质量公式
- 批准号:
23K19014 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
無限次元代数群とリー代数の構造および表現とその応用
无限维代数群和李代数的结构和表示及其应用
- 批准号:
21J10690 - 财政年份:2021
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
代数群作用を持つ代数多様体族の研究
具有代数群作用的代数簇族的研究
- 批准号:
21K03179 - 财政年份:2021
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
簡約代数群とその被覆群のエンドスコピーの研究
约简代数群及其覆盖群的内窥镜研究
- 批准号:
20K03534 - 财政年份:2020
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Chow ring and cycle map of the classifying space of a linear algebraic group
线性代数群分类空间的 Chow 环和圈图
- 批准号:
17K05263 - 财政年份:2017
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affine fibrations on algebraic varieties and algebraic group actions
代数簇上的仿射纤维和代数群作用
- 批准号:
15K04831 - 财政年份:2015
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ホップ代数を用いたスーパー代数群の研究
用Hopf代数研究超代数群
- 批准号:
14J02022 - 财政年份:2014
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows