Is a model accepted in a small sample really better than a model rejected in a large sample?
小样本中接受的模型真的比大样本中拒绝的模型更好吗?
基本信息
- 批准号:09680308
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. In this project, exploratory factor analysis model is considered. A suitable model is often rejected in a large sample in factor analysis, and then one usually increases in the number of factors. As a result, an improper solution is obtained. The ultimate aim of this project is to discuss whether the model rejected should be adopted in case when such a problem arises. For this we need to study causes of the improper solution. One fruit of this project on this respect is to suggest how to identify the cause of an improper solution and to find it useful in many real examples. This result was presented as an invited lecture at the IFCS1998 conference at Rome.2. One possible cause of rejecting a suitable model in factor analysis is to include an variable inconsistent with the model considered. We suggest a new way of identifying an inconsistent variable with respect to a measure of goodness-of-fit. The result will be published in Psychometrika, an international journal on psychometrics.3. The new way of the variable selection was programmed using JAVA and was open to public as a Web Page. We refer to the program as SEFA.4. We held a workshop on SEFA in the annual meeting of the Japanese Psychological Society in 1999 to discuss usefulness of the program through applications to various fields of statistical oriented studies. Both a variable augmentation method and variable elimination method are described. It was shown that the variable elimination method is useful for exploratory purpose while the variable augmentation method is important for the case where there are some important variables that can not be eliminated in the research.
1.本研究采用探索性因子分析模型。在因子分析中,一个合适的模型往往在大样本中被拒绝,然后通常会增加因子的数量。结果,得到不适当的解。本项目的最终目的是讨论在出现此类问题时,是否应采用被拒绝的模型。为此,我们需要研究解决方案不当的原因。这个项目在这方面的一个成果是建议如何识别不正确的解决方案的原因,并发现它在许多真实的例子中是有用的。这一结果已作为特邀演讲在2002年2月举行的IFCS 1998会议上发表。在因子分析中拒绝合适的模型的一个可能原因是包括与所考虑的模型不一致的变量。我们提出了一种新的方法来确定一个不一致的变量的拟合优度的措施。研究结果将发表在国际心理测量学期刊《心理测量学》上。用JAVA语言编写了变量选择的新方法,并以网页形式向公众开放。我们称该方案为SEFA。我们在1999年日本心理学会年会上举办了SEFA研讨会,讨论该计划在统计研究的各个领域的应用。本文介绍了一种变量增广法和一种变量消去法。结果表明,变量剔除法适用于探索性研究,而变量增广法适用于研究中存在重要变量无法剔除的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kano, Y.: "Exploratory factor analysis with a common factor with two indicators"Behaviormetrika. Vol.24, No.2. 129-145 (1997)
Kano, Y.:“具有两个指标的共同因素的探索性因素分析”Behaviormetrika。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kano,Y.: "More higher-ordar efficiency" Journal of Multivariate Analysis. 67(2). 349-366 (1998)
Kano,Y.:“更高阶效率”多元分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
狩野 裕: "AMOS EQS LISRELに グラフィカル多変量解析"狩野 裕(現代数学社). 235 (1997)
Yutaka Kano:“AMOS EQS LISREL 中的图形多变量分析”Yutaka Kano (Gendai Mathisha) 235 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kano,Y.: "Exploratory factor analysis with a common factor with two indicators" Behaviormetrika. 24(2). 129-145 (1997)
Kano,Y.:“具有两个指标的共同因素的探索性因素分析”Behaviormetrika。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
狩野 裕: "不適解の原因と処理:探索的因子分析" 大阪大学人間科学部紀要. (印刷中).
Yutaka Kano:“不适当答案的原因和处理:探索性因素分析”大阪大学人文科学学院通报(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANO Yutaka其他文献
KANO Yutaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANO Yutaka', 18)}}的其他基金
Mechanism of fiber type maintenance and change in skeletal muscle fibers as multinucleated cells
多核细胞骨骼肌纤维纤维类型维持和变化的机制
- 批准号:
15K12665 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Visualization of mitochondrial behavior for oxygen environment in myocytes
心肌细胞氧环境线粒体行为的可视化
- 批准号:
25560335 - 财政年份:2013
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Bioimaging technique to observe skeletal muscle metabolites in vivo
生物成像技术观察体内骨骼肌代谢物
- 批准号:
23650403 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Statistical regularization theory and neurophysiology
统计正则化理论和神经生理学
- 批准号:
23650145 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Comprehensive study on statistical causal inference
统计因果推断综合研究
- 批准号:
18300094 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Between ICA and SEM
ICA 和 SEM 之间
- 批准号:
15500185 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Confirmatory" independent component analysis and independent factor analysis
“验证性”独立成分分析和独立因子分析
- 批准号:
12680315 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Developing variable selection methods and post-selection inference under double-descent phenomena
开发双下降现象下的变量选择方法和选择后推理
- 批准号:
23K18471 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Doubly-robust variable selection in high dimensions
高维双鲁棒变量选择
- 批准号:
2310654 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
- 批准号:
RGPIN-2021-02733 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Variable Selection and Prediction for High-Dimensional Genetic Data with Complex Structures
复杂结构高维遗传数据的变量选择与预测
- 批准号:
RGPIN-2020-05133 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Novel p-Value Based Multiple Testing Methods for Variable Selection with False Discovery Rate Control
基于 p 值的新颖变量选择多重测试方法以及错误发现率控制
- 批准号:
2210687 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Bayesian variable selection for genetic and genomic studies
用于遗传和基因组研究的贝叶斯变量选择
- 批准号:
2750748 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Variable Selection and Prediction for High-Dimensional Genetic Data with Complex Structures
复杂结构高维遗传数据的变量选择与预测
- 批准号:
RGPIN-2020-05133 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
- 批准号:
RGPIN-2021-02733 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual