Neural network learning with regulatizers and generalization ability

具有调节器和泛化能力的神经网络学习

基本信息

  • 批准号:
    09680371
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

The relation between neural network learning with regularizes and generalization ability is clarified both theoretically and empirically. In the present theoretical study, a Laplacian regularize, a Gaussian regularize and their combinations are considered.In the first stage, various empirical procedures in a structural learning with forgetting proposed by the authors are theoretically clarified. For example, a structural learning with selective forgetting has something to do with the line process in vision under the assumption that a scene is almost smooth except a small number of discontinuous points.In the second stage, a estimation of mean value using regularization is theoretically studied. It is the simplest case of multiple regression models. It is demonstrated that the proposed regularization method is effectively applied to real data.In the third stage, excessive simplification in a formulation of generalization errors in multiple regression models is rectified. So for it has been assumed that input variables are mutually independent, and true model parameters and a noise variance are known a priori. We modified formulations so as to allow correlations between input variables. We propose a novel procedure for theoretically evaluating regularizes based on data. Firstly, we estimate model parameters and a noise variance from data. Secondly, assuming that these estimates are true, we calculate the optimal regularization parameters and model parameters by the previously proposed method. It provides, hopefully, their better estimates. Thirdly, assuming that the resulting estimates are true, we again calculate the optimal regularization parameters and model parameters. This procedure can be repeated iteratively. This iterative estimation is a key idea of the present study. Applications of the proposed method to real data demonstrates that better estimates with smaller generalization errors are obtained successfully.
从理论和实证两方面阐明了带正则化的神经网络学习与泛化能力之间的关系。本文的理论研究主要包括Laplacian正则化、Gaussian正则化以及它们的组合。在第一阶段中,从理论上阐明了作者提出的带遗忘的结构学习中的各种经验过程。例如,在场景除了少数不连续点之外几乎平滑的假设下,具有选择性遗忘的结构学习与视觉中的线过程有关。在第二阶段,从理论上研究了使用正则化的均值估计。这是多元回归模型中最简单的情况。结果表明,所提出的正则化方法能有效地应用于真实的数据。第三阶段,纠正了多元回归模型泛化误差公式中的过度简化。因此,假设输入变量是相互独立的,并且真实的模型参数和噪声方差是先验已知的。我们修改配方,以便允许输入变量之间的相关性。我们提出了一个新的程序,从理论上评估正则化的数据。首先,我们从数据中估计模型参数和噪声方差。其次,假设这些估计是真的,我们计算的最佳正则化参数和模型参数由以前提出的方法。希望它能提供更好的估计。第三,假设得到的估计是真的,我们再次计算最优正则化参数和模型参数。该过程可以迭代地重复。这种迭代估计是本研究的一个关键思想。对真实的数据的应用表明,该方法能获得较好的估计和较小的推广误差。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
石川眞澄: "特集 脳と情報処理…脳はどこまで創れるのか ニューラルネットによるデータからの規則の発見" Computer Today. 90. 16-21 (1999)
Masumi Ishikawa:“专题:大脑和信息处理......大脑能走多远?使用神经网络从数据中发现规则”《今日计算机》90. 16-21 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ishikawa,K.Yoshida,S.Amari: "Designing regularizers by minimizing generalization errors" Proceedings of IJCNN'98 1998 IEEE World Congress on Computational Intelligence. 2328-2333 (1998)
M.Ishikawa、K.Yoshida、S.Amari:“通过最小化泛化误差来设计正则化器”IJCNN98 1998 IEEE 计算智能世界大会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masumi Ishikawa: "Designing neural netwarks by a combination of structural learning and genetic algorithms"Artifical Neural Networks-ICANN'97,Lasanne,Switzerland,Lecture Notes in Computer Science,1327. 415-420 (1997)
Masumi Ishikawa:“通过结构学习和遗传算法的组合设计神经网络”人工神经网络-ICANN97,拉桑,瑞士,计算机科学讲义,1327。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masumi Ishikawa: "Designing neural networks by a combination of structural learning and genetic algorithms"ICANN'97 Lecture Notes in Computer Science. 1327. 415-420 (1997)
Masumi Ishikawa:“通过结构学习和遗传算法的结合来设计神经网络”ICANN97 计算机科学讲座笔记。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Shimada, M. Ishikawa, and S. Amari: "Designing regularizes based on data by minimizing generalization errors"Technical Report of the Institute of Electronics, Information and Communication Engineers. NC99-128(in Japanese). 81-88 (2000)
H. Shimada、M. Ishikawa 和 S. Amari:“通过最小化泛化误差,根据数据进行设计正则化”电子信息通信工程师学会的技术报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIKAWA Masumi其他文献

ISHIKAWA Masumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIKAWA Masumi', 18)}}的其他基金

Advancement of reinforcement learning and its applications to mobile robots based on spatio-temporal segmentation of the environment
基于环境时空分割的强化学习进展及其在移动机器人中的应用
  • 批准号:
    18500175
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a cognitive map for mobile robot and its advancement inspired by place cells in hippocampus
移动机器人认知地图的开发及其受海马位置细胞启发的进展
  • 批准号:
    15500140
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-organization of environmental maps based on scene images and navigation of mobile robots
基于场景图像的环境地图自组织及移动机器人导航
  • 批准号:
    11680393
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rule extraction by a structural learning of neural networks
通过神经网络的结构学习进行规则提取
  • 批准号:
    07680404
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

General Theory of Implicit Regularization
隐式正则化的一般理论
  • 批准号:
    EP/Y028333/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grant
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
  • 批准号:
    2242447
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
  • 批准号:
    23K19981
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
  • 批准号:
    2143215
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
  • 批准号:
    RGPIN-2021-02618
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and robust inference for regularization with regular and functional data
使用常规数据和函数数据进行高效且稳健的正则化推理
  • 批准号:
    RGPIN-2016-06366
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
  • 批准号:
    RGPIN-2021-03747
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Exploration of nonlinear solutions dicribing wave turbulence using regularization
使用正则化描述波湍流的非线性解的探索
  • 批准号:
    22K03897
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularization Techniques for Optimal Transportation
最佳运输的正则化技术
  • 批准号:
    567921-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了