Boundary Integral Expression of Forced Convection Heat Transfer under Arbitrary Surface Temperature Distributions and Its Application to Heat Transfer Optimal Design
任意表面温度分布下强制对流换热的边界积分表达式及其在传热优化设计中的应用
基本信息
- 批准号:09650240
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Convection heat transfer characteristics depend not only on geometric and flow boundary configurations, but on also thermal boundary conditions. Thus, in order to evaluate the heat transfer rate under arbitrary thermal boundary conditions, we need to develop a general heat transfer expression instead of ordinary heat transfer coefficient defined in Newton's cooling law.From this reason, we have proposed a boundary integral expression of forced convection heat transfer, in which the heat transfer rate is expressed as a function of thermal boundary conditions. Moreover, we have extended this expression for natural and mixed convection heat transfer problems by using the perturbation method.The results obtained can be summarized as follows :(1) Local heat transfer rate in forced convection heat transfer problem can be expressed by a Fredholm-type boundary integral as a function of surface temperature distributions. This boundary integral expression, whose kernel can be obtained by a numerical simulation technique, also clarifies a detailed mechanism of forced convection heat transfer.(2) A numerical solution of adjoint problem for forced convection heat transfer enables us to calculate the mean heat transfer rate under arbitrary steady and unsteady thermal boundary conditions.(3) Introducing the perturbation principle and using the numerical solutions of base and perturbed adjoint problems, a kind of sensitivity function can be constructed for natural and mixed convection heat transfer. The sensitivity function gives the change of mean heat transfer rate for arbitrary thermal and flow boundary perturbations.
对流换热特性不仅取决于几何和流动边界配置,但也热边界条件。因此,为了计算任意热边界条件下的传热率,需要用一般的传热表达式来代替牛顿冷却定律中定义的传热系数,为此,我们提出了强制对流传热的边界积分表达式,其中传热率表示为热边界条件的函数。此外,我们还利用摄动方法将该表达式推广到自然对流和混合对流换热问题,所得结果可概括如下:(1)强迫对流换热问题中的局部换热率可以用Fredholm型边界积分表示,它是表面温度分布的函数。这种边界积分表达式,其内核可以通过数值模拟技术获得,也阐明了强制对流传热的详细机制。(2)强迫对流换热伴随问题的数值解法使我们能够计算任意定常和非定常热边界条件下的平均换热率。(3)引入摄动原理,利用基本问题和摄动伴随问题的数值解,可以构造一种适用于自然对流和混合对流换热的灵敏度函数。灵敏度函数给出了任意热边界和流动边界扰动下平均传热率的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
桃瀬一成: "対流熱伝達特性に対する熱および流れの境界摂動の影響(随伴作用素表現に基づく数値解析)"日本機械学会論文集(B編). (印刷中). (2000)
Kazunari Momose:“热和流动边界扰动对对流传热特性的影响(基于伴随算子表达式的数值分析)”日本机械工程师学会论文集(B 版)(2000 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazunari Momose: "Influence of Thermal Boundary Conditions on Natural Convection Heat Transfer"Heat Transfer-Asian Research. 28・6. 500-512 (1999)
Kazunari Momose:“热边界条件对自然对流传热的影响”《传热-亚洲研究》28・6(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazunari Momose: "Fredholm-Type Boundary Integral Expression of Forced Convection Heat Transfer and Its Application to Convection Conduction Conjugated Heat Transfer Problem"JSME International Journal, Series B. 40・3. 447-453 (1997)
Kazunari Momose:“强制对流传热的Fredholm型边界积分表达式及其在对流传导共轭传热问题中的应用”JSME国际期刊,系列B.40・3(1997年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazunari Momose, Kiyoshi Sasoh and Hideo Kimoto: "Thermal Boundary Condition Effects on Forced Convection Heat Transfer (Application of Numerical Solution of Adjoint Problem)"JSME International Journal, Series B. Vol. 42-2. 293-299 (1999)
Kazunari Momose、Kiyoshi Sasoh 和 Hideo Kimoto:“强制对流传热的热边界条件效应(伴随问题数值解的应用)”JSME 国际期刊,B 系列卷。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazunari Momose, Makoto Ueda and Hideo Kimoto: "Influence of Thermal and Flow Boundary Perturbations on Convection Heat Transfer Characteristics(Numerical Analysis based on Adjoint Formulation)"Transactions of JSME, series B. (in press). (2000)
Kazunari Momose、Makoto Ueda 和 Hideo Kimoto:“热和流动边界扰动对对流传热特性的影响(基于伴随公式的数值分析)”JSME 交易,B 系列(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MOMOSE Kazunari其他文献
MOMOSE Kazunari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MOMOSE Kazunari', 18)}}的其他基金
Adjoint Approach to Sensitivity Analysis of Convection Heat Transfer and Its Application to Heat Transfer Optimal Design
对流传热敏感性分析的伴随方法及其在传热优化设计中的应用
- 批准号:
12650204 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Understanding the Role of Mechanical Boundary Conditions on Tissue Assembly and Repair in 3D Fibrous Microtissues
了解机械边界条件对 3D 纤维微组织中组织组装和修复的作用
- 批准号:
2311640 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Development of an operational solar wind model based on novel inner boundary conditions
基于新颖内部边界条件的可操作太阳风模型的开发
- 批准号:
2889121 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Beyond Mean Climate: Quantifying Climate Variability and Extremes under Varying Boundary Conditions
超越平均气候:量化不同边界条件下的气候变化和极端情况
- 批准号:
2303149 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Boundary conditions of conceptual spaces
概念空间的边界条件
- 批准号:
ES/X00824X/1 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Research Grant
Transient ocean overturning response to changes in boundary conditions.
瞬态海洋翻转对边界条件变化的响应。
- 批准号:
RGPIN-2022-04306 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Space, time and boundary conditions: Mathematics for evolving plaques.
空间、时间和边界条件:演化斑块的数学。
- 批准号:
DP220101454 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Projects
Finite-element implementation of periodic boundary conditions for 1D wave propagation
一维波传播周期性边界条件的有限元实现
- 批准号:
574992-2022 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
University Undergraduate Student Research Awards
Boundary Conditions for Age-related Associative Deficit: Behavioural Moderators and Neural Mechanisms
与年龄相关的联想缺陷的边界条件:行为调节器和神经机制
- 批准号:
RGPIN-2020-04978 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Classificatoin of gapped boundary conditions of topological phases
拓扑相有隙边界条件的分类
- 批准号:
22K13969 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists