The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
基本信息
- 批准号:09440037
- 负责人:
- 金额:$ 3.97万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, it was showed that the total length of cut locus of Riemannian surface is finite in the study of the structure of cut locus and by using this Ambrose's problem of surface was answered affirmatively. The purposes of this research are to study the structure of cut locus of Riemannian manifold and to study global Riemannian geometry by using the above results.The most main result that the distance function to the cut locus is Lipshitz continuous is proved the 1'st year, and now printing (joint work with M.Tanaka). It follows that the distance is derived naturally on the cut locus. It happens the following interesting question "what is the natural geometric structure on the cut locus?''In the study of some kind of stratification of cut locus of CィイD1∞ィエD1 Riemannian manifold, at the beginning, we tried the problem "Is the cut locus locally a submanifold around any cut point except for any subset which is of local dimensional Hausdorff measure zero?" We proved this affirmatively by very complicated method (j.w. with M.Tanaka.). Now, we are searching simpler method.Also we studied the set of critical points of distance function which is closely related with the cut locus. We proved last year that the set of all critical values of the distance function for a submanifold of a 3-dimensional complete Riemannian manifold is of Lebesgue measure zero (Sard type theorem). Now, we extend this result that ィイD71(/)2ィエD7-dimensional Hausdorff measure is zero (j.w. with M.Tanaka). By using method we expect that in the 4-dimensional case it is of Lebesgue measure zero.We cannot answered Ambrose's problem of general dimension, but we get the evaluation of face of Voronoi domain in any Hadamard manifold and showed that the subset (essential cut locus) of the cut locus which is contained any critical point of distance function is not so complicated in the case of low dimensional convex polytope.
最近,在研究切割轨迹结构的过程中,证明了黎曼曲面切割轨迹的总长度是有限的,并由此肯定地回答了曲面的Ambrose问题。本研究的目的是研究黎曼流形切割轨迹的结构,并利用上述结果来研究全局黎曼几何。最主要的结果是到切割轨迹的距离函数是利普希兹连续的,这是在1年被证明的,现在正在印刷(与田中先生联合工作)。由此可见,距离是在切割轨迹上自然推导出来的。这就引出了一个有趣的问题"切割轨迹上的自然几何结构是什么?”削减一些分层的研究轨迹CィイD1∞ィエD1黎曼流形,在一开始,我们尝试的问题”是减少轨迹周围局部子流形切割点除了任何子集的当地维豪斯道夫测度零?”我们用非常复杂的方法肯定地证明了这一点(j.w.与田中)。现在,我们正在寻找更简单的方法。研究了与切割轨迹密切相关的距离函数的临界点集合。去年我们证明了三维完全黎曼流形的子流形的距离函数的所有临界值的集合是勒贝格测度为零的(Sard型定理)。现在,我们推广了这一结果,即j.w. with M.Tanaka证明了j.w. d . 7维Hausdorff测度为零。通过使用该方法,我们期望在四维情况下它是勒贝格测度零。我们不能回答一般维数的Ambrose问题,但我们得到了任意Hadamard流形上Voronoi区域面的评价,并证明了在低维凸多面体的情况下,包含距离函数任意临界点的切割轨迹的子集(本质切割轨迹)并不复杂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y. Hiramine et al.: "Characterization of translation planes by orbit length"Geometricae Dedicata. 78. 69-80 (1999)
Y. Hiramine 等人:“通过轨道长度表征平移平面”Geometricae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Hiramine et al.: "Characterization of translation planes by orbit length" Geometricae Dedicata. (発表予定).
Y. Hiramine 等人:“通过轨道长度表征平移平面”Geometricae Dedicata(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Hiramine & A. Garciano: "On Sylow Subgroups of Abelian Affine Difference Sets"Designs, Codes and Cryptography. (発売予定).
Y. Hiramine 和 A. Garciano:“论阿贝尔仿射差集的 Sylow 子群”设计、代码和密码学(待发布)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Itoh & M.Tanaka: "The dimension of a cut locus on a smooth Riemannian manifold" Tohoku Mathematical Journal. (発表予定).
J.Itoh 和 M.Tanaka:“光滑黎曼流形上切割轨迹的维数”东北数学杂志(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Hiramine & C.Suetake: "A note on the Aschbacher biplanes of order 11" ″Mostly Finite Geometries″, edited by N. L. Johnson, Marcel Dekker, Inc. New York-Basel-Hong Kong. 215-225 (1997)
Y.Hiramine 和 C.Suetake:“关于 11 阶阿施巴赫双翼飞机的注释”“大部分有限几何”,由 N. L. Johnson、Marcel Dekker, Inc. 编辑。纽约-巴塞尔-香港 (1997)。 )
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOH Jin-ichi其他文献
ITOH Jin-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOH Jin-ichi', 18)}}的其他基金
New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
- 批准号:
23540098 - 财政年份:2011
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
- 批准号:
20540085 - 财政年份:2008
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive studies of cut locus
切割轨迹综合研究
- 批准号:
17540085 - 财政年份:2005
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relation between Riemannian geometry and discrete geometry from the view point of minimulity
从极小值的角度看黎曼几何与离散几何的关系
- 批准号:
14540086 - 财政年份:2002
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of polyhedron from the view point of differential geometry
从微分几何的角度看多面体几何
- 批准号:
12640079 - 财政年份:2000
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
DIFFERENTIAL DISTANCE FUNCTION COMPUTATIONS FOR MESH GENERATION
网格生成的差分距离函数计算
- 批准号:
EP/E057233/1 - 财政年份:2007
- 资助金额:
$ 3.97万 - 项目类别:
Research Grant
Robust Productivity Measurement: An Econometric Distance Function Approach
稳健的生产率测量:计量经济学距离函数方法
- 批准号:
DP0450568 - 财政年份:2004
- 资助金额:
$ 3.97万 - 项目类别:
Discovery Projects