Geometry of polyhedron from the view point of differential geometry
从微分几何的角度看多面体几何
基本信息
- 批准号:12640079
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The analogous results for polyhedron of Gauss's Theorema Egregium and Weyl's volume formula were proved and written in the 2-dimensional case. The Cohn-Vossen type inequality for 2-polyhedron, the total curvature of graphs and its tightness are written.There are the related new problems, for examples, the acute troangulations, the structure of essential cut locus, the length of cycles of cut locus, etc. All these problems are very exploratory and are expected to produce greate results by continuing studies.With respect to the acute triangulations, we proved that the cubed surface admitts an acute triangulations with 24 triangles, the icosahedral surface admitts an acute triangulations with 12 triangles, and these are the least numbers. 'The dodecahedral surface does not have any acute triangulations with triangles less than 11 and admits an acute triangulation with 14 triangles. Moreover we discussed several other cases and got some fundamental ideas how to treat the general convex surfaces.Withrespect to the essential cut locus, we define it in the case of a surface as the essential part of cut locus containing all critical points of distance function, and proved that the number of end points or the degree of vertices is related with several invariants of its inner metric. Moreover, we consider its structure in the case of convex polyhedron in general dimension.With respect to the length of cycles of cut locus, we proved that there is a point p on any torus with diameter 1 such taht the length of cycles in the cut locus of p is greater than 2. It is the best possible estimate and there is no upper bound.
在二维情形下,证明并写出了高斯多面体、埃氏定理和Weyl体积公式的类似结果。给出了2-多面体的Cohn-Vossen型不等式、图的全曲率及其紧性等新问题,如锐化三角剖分、本质割轨迹的结构、割轨迹圈的长度等,这些问题都是很有探索性的,经过不断的研究可望得到更好的结果。对于锐化三角剖分,证明了三次曲面允许24个三角形的锐化三角剖分,二十面体曲面允许12个三角形的锐化三角剖分,这些都是最少的。“十二面体表面没有任何小于11个三角形的锐角三角剖分,允许有14个三角形的锐角三角剖分。”对于本质割轨迹,我们将其定义为包含距离函数所有临界点的割轨迹的本质部分,并证明了端点数或顶点的度数与其内度量的几个不变量有关。此外,我们还考虑了一般维凸多面体的结构.关于割轨迹的圈的长度,我们证明了在任何直径为1的环面上存在一个点p,使得p的割轨迹的圈的长度大于2.这是最好的估计,并且不存在上界.
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Itoh,J.: "Acute triangulations of sphere and icosahedron"Josai Mathematical Monographs. 3. 53-62 (2001)
伊藤,J.:“球面和二十面体的锐角三角剖分”城西数学专着。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ohtsuka(Matsuhisa),T.& Machigashira,Y.: "Total Excess on Length Surfaces"Mathematische Annalen. (発表予定).
Ohtsuka(Matsuhisa), T. 和 Machigashira, Y.:“长度曲面上的总过剩”数学年鉴(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Itoh, J., Tanaka, M.: "The Lipschitz continuity of the distance function to the cut locus"Transactions of American Mathematical Society. 353. 21-40 (2001)
Itoh, J.,Tanaka, M.:“距离函数到割轨迹的 Lipschitz 连续性”美国数学会汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hangan, T., Itoh, J. & Zamfirescu, T.,: "Acute triangulations"Bull. Math. de la Societe des Sciences Math. de Roumanie. 43. 279-286 (2000)
Hangan,T.,伊藤,J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Onishi, K, Itoh, J: "Voronoi diagram on simply connected complete manifold"IEICE Trans. Fundamentals. (発表予定).
Onishi, K, Itoh, J:“简单连通完整流形的 Voronoi 图”IEICE Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOH Jin-ichi其他文献
ITOH Jin-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOH Jin-ichi', 18)}}的其他基金
New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
- 批准号:
23540098 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
- 批准号:
20540085 - 财政年份:2008
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive studies of cut locus
切割轨迹综合研究
- 批准号:
17540085 - 财政年份:2005
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relation between Riemannian geometry and discrete geometry from the view point of minimulity
从极小值的角度看黎曼几何与离散几何的关系
- 批准号:
14540086 - 财政年份:2002
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
- 批准号:
09440037 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
离散分析-分形和图上的分析及其应用
- 批准号:11271011
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
共形几何与液晶问题中的偏微分方程
- 批准号:11201223
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant