Comprehensive studies of cut locus
切割轨迹综合研究
基本信息
- 批准号:17540085
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the cut loci and related several topics, for example, the farthest points or simple closed geodesies on convex surfaces and got many results.As the problem to determine the cut locus, we proved that some compact Liouville manifolds have the property that the cut loci of general points are smoothly embedded closed disks of codimension one. Ellipsoids with distinct axes are typical examples of such manifolds. We discussed on an extension to general dimension of Jacobi's last theorem(conjugate loci on ellipsoids have exact four cusps), and we got some remarkable progress and are planning to continue the research. Moreover, as the related topics, we got a modern proof of thread constructions of general quadric(hyper)surfaces by using the first integral (jointed work with K. Kiyohara).As the problem to study structures of cut locus, under some non-degenerating assumption we proved that the cut locus admits a nice stratification, some cone structure locally. Under stronger assumptions we have simpler procedure of Morse theory by using of critical points of distance functions (jointed work with T. Sakai).We established, for general convex surfaces, inequalities involving the diameter, the area and the length of simple closed quasi-geodesics (jointed work with C. Vilcu).Using the above simple closed quasi-geodesics we proved that any polyhedra are unfolded to a planar simple polygon by some cutting (jointed work with J. O'Rourke, C. Vilcu).We discussed several other unfolding by using simple clodes quasi geodesics, also
我们研究了割轨及其相关的一些问题,如凸曲面上的最远点或简单闭测地线,得到了许多结果,作为确定割轨的问题,我们证明了某些紧致Liouville流形具有一般点的割轨光滑嵌入余维为1的闭圆盘的性质。具有不同轴的椭球是这种流形的典型例子。我们讨论了Jacobi定理(椭球上的共轭轨迹有正四个尖点)的推广,取得了一些显著的进展,并计划继续研究。此外,作为相关课题,我们利用第一积分(与K。作为研究割轨迹结构的问题,在一定的非退化假设下,证明了割轨迹具有良好的分层性,局部具有锥结构。在较强的假设条件下,利用距离函数的临界点,我们得到了莫尔斯理论的简化过程(与T.本文对一般凸曲面建立了简单闭拟测地线的直径、面积和长度不等式(与C。利用上述简单闭拟测地线,我们证明了任何多面体都可以通过某种切割展开为平面简单多边形(与J.O'Rourke,C. Vilcu),并利用简单的Clodes拟测地线讨论了其它几种开折,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a Liouville type th.For harmonic maps to convex spaces via Markov chains
关于刘维尔型 th.对于通过马尔可夫链到凸空间的调和映射
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:K. Kuwae;K. Th. Sturm
- 通讯作者:K. Th. Sturm
On the length of shnple closed quasigeodesics on convex surfaces
凸曲面上的snple闭准测地线的长度
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J. Itoh;C. Vilcu
- 通讯作者:C. Vilcu
Cut loci and farthest points on surfaces
切割表面上的轨迹和最远点
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K. Ieiri;J. Itoh;C Vilcu;酒井 隆;T. Sakai;伊藤 仁一
- 通讯作者:伊藤 仁一
Farthest points and cut loci on surfaces
曲面上的最远点和切割轨迹
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K. Ieiri;J. Itoh;C Vilcu;酒井 隆;T. Sakai;伊藤 仁一;J. Itoh;伊藤 仁一
- 通讯作者:伊藤 仁一
Jacobi's last geometric statement extends to a wider class of Liouville surfaces
雅可比的最后一个几何陈述扩展到更广泛的刘维尔曲面类别
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:T.Matsuyama;M.Tanaka;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Tanaka
- 通讯作者:M.Tanaka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOH Jin-ichi其他文献
ITOH Jin-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOH Jin-ichi', 18)}}的其他基金
New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
- 批准号:
23540098 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
- 批准号:
20540085 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relation between Riemannian geometry and discrete geometry from the view point of minimulity
从极小值的角度看黎曼几何与离散几何的关系
- 批准号:
14540086 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of polyhedron from the view point of differential geometry
从微分几何的角度看多面体几何
- 批准号:
12640079 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
- 批准号:
09440037 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
The projective geometry of Zoll surfaces and the Cut locus on Finsler manifolds
Zoll 曲面的射影几何和 Finsler 流形上的切割轨迹
- 批准号:
20K03595 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cut locus and variational problems with constaints on Finsler manifolds
求解 Finsler 流形上的轨迹和变分问题
- 批准号:
17K05226 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An advanced study of cut locus and related topics
切割轨迹及相关主题的高级研究
- 批准号:
26400072 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
- 批准号:
23540098 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
- 批准号:
20540085 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
- 批准号:
09440037 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regulation and Function of the cut Locus in Drosophila
果蝇切割位点的调控和功能
- 批准号:
9205250 - 财政年份:1992
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Molecular Genetics of the Cut Locus in Drosophila
果蝇切割位点的分子遗传学
- 批准号:
8811519 - 财政年份:1988
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
GENETIC AND MOLECULAR ANALYSIS OF THE CUT LOCUS OF D MELANOGASTER
黑腹果蝇切割位点的遗传和分子分析
- 批准号:
4693255 - 财政年份:
- 资助金额:
$ 2.3万 - 项目类别:
GENETIC AND MOLECULAR ANALYSIS OF THE CUT LOCUS OF D MELANOGASTER
黑腹果蝇切割位点的遗传和分子分析
- 批准号:
3965278 - 财政年份:
- 资助金额:
$ 2.3万 - 项目类别: