The relation between Riemannian geometry and discrete geometry from the view point of minimulity

从极小值的角度看黎曼几何与离散几何的关系

基本信息

  • 批准号:
    14540086
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

We studied various problems, here we summarize some of them, especially acut triangulation, total curvature of curves, cut locus of ellipsoids.We studied acute triangulations on the surfaces of Platonic solids. We proved that the surface of icosahedron can be triangulated with 8 non-obtuse and with 12 acute triangles. We also showed these numbers to be smallest possible. In the case of the regular dodecahedral surface, we proved that there exists a triangulation with only 10 non-obtuse triangles, and that this is best possible, we also proved the existence of a triangulation with 14 acute triangles, and the non-existence os such triangulations with less than 12 triangles.The total absolute curvature of non closed curves in S^2 is studied. We look at the set of curves with fixed end points and end-directions and see how the infimum of the total absolute curvature in this set depends on the endpoints and the end-directions. We consider both the case when the length od curves is fixed and the case when the length is free, and see the difference results between them. Furthermore, we determin the shape of the curve in S^2 which minimize the total curvature in the set of nonclosed curves with fixed end points, end-directions and length.We studied small holes through which regular 3-,4- and 5-dimensional simplices can pass through.We proved that the cut locus of any point on any ellipsoid is an arc on the curvature line through the antipodal point. Also, we proved that the conjugate locus has exactly four cusps, which is known as the last geometric statement of Jacobi. Furthermore we studied in the case of some kind of Liouville surfaces and get the similar results.
我们研究了各种问题,在这里我们总结了其中的一些问题,特别是切三角剖分,曲线的全曲率,椭球的割轨迹。我们研究了柏拉图实体表面上的锐化三角剖分。证明了二十面体的曲面可以用8个非钝三角形和12个锐三角形进行三角剖分。我们还表明这些数字是可能的最小值。在正十二面体曲面的情况下,我们证明了存在一个只有10个非钝三角形的三角剖分,这是最佳可能的,我们还证明了有14个锐化三角形的三角剖分的存在,以及少于12个三角形的三角剖分的不存在。研究了S^2中非闭合曲线的全绝对曲率。我们观察具有固定端点和端点方向的曲线集,并了解该集合中总绝对曲率的下确界如何依赖于端点和端点方向。我们既考虑了曲线长度固定时的情况,又考虑了长度为自由时的情况,并观察了它们之间的差异。在此基础上,我们确定了S[2]中以最小化全曲率为目标的曲线的形状,研究了具有固定端点、端点和长度的非闭合曲线集上的小孔,证明了任意椭球面上任意一点的割线都是曲率线上通过对极点的弧形.证明了共轭轨迹恰好有四个尖点,这是雅可比的最后一个几何命题。此外,我们还研究了一些Liouville曲面的情况,得到了类似的结果。

项目成果

期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Weyl functional near the Yamabe invariant
Yamabe 不变量附近的 Weyl 泛函
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akutagawa K.;Botvinnik B;Kobayashi O.Seshadri H.
  • 通讯作者:
    Kobayashi O.Seshadri H.
Voronoi diagram on simply connected complete manifold
简单连通完整流形的 Voronoi 图
The total absolute curvature of nonclosed curve in S-2, I & II
S-2中非闭合曲线的总绝对曲率,I
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Itoh;J;Enomoto;K.
  • 通讯作者:
    K.
Itoh, J, Sinclair, R: "Thaw : A tool for approximating cut loci on a triangulation of a surface"Experimental Math.. (発表予定).
Itoh, J, Sinclair, R:“解冻:一种用于近似表面三角剖分上切割轨迹的工具”实验数学..(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
リウヴィル曲面におけるカットローカス
刘维尔面上的切割轨迹
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITOH Jin-ichi其他文献

ITOH Jin-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ITOH Jin-ichi', 18)}}的其他基金

New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
  • 批准号:
    23540098
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
  • 批准号:
    20540085
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive studies of cut locus
切割轨迹综合研究
  • 批准号:
    17540085
  • 财政年份:
    2005
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of polyhedron from the view point of differential geometry
从微分几何的角度看多面体几何
  • 批准号:
    12640079
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
  • 批准号:
    09440037
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Advanced Signal Processing Techniques on a Riemannian Manifold
黎曼流形上的先进信号处理技术
  • 批准号:
    RGPIN-2019-05415
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Signal Processing Techniques on a Riemannian Manifold
黎曼流形上的先进信号处理技术
  • 批准号:
    RGPIN-2019-05415
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Signal Processing Techniques on a Riemannian Manifold
黎曼流形上的先进信号处理技术
  • 批准号:
    RGPIN-2019-05415
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Bergman Kernel Estimates and Spectrum of Complete Riemannian Manifold
完整黎曼流形的伯格曼核估计和谱
  • 批准号:
    1908513
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Advanced Signal Processing Techniques on a Riemannian Manifold
黎曼流形上的先进信号处理技术
  • 批准号:
    RGPIN-2019-05415
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Riemannian manifold of multivariate distributions in view of geometrical aspects
几何方面多元分布的黎曼流形
  • 批准号:
    25380265
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Riemannian Manifold Learning via Shearlet Approximation (A10#)
通过剪切波近似进行黎曼流形学习 (A10
  • 批准号:
    232764648
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    CRC/Transregios
GEOMETRY OF LAPLACE OPERATOR OR ITS VARIATION TYPE OPERATOR ON RIEMANNIAN MANIFOLD (2003)
黎曼流形上拉普拉斯算子或其变分型算子的几何结构(2003)
  • 批准号:
    12640078
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Geometry of a Riemannian Manifold As Determined By Its Curvature Operator
由曲率算子确定的黎曼流形的几何形状
  • 批准号:
    7804373
  • 财政年份:
    1978
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
The Geometry of a Riemannian Manifold As Determined By Its Curvature Operator
由曲率算子确定的黎曼流形的几何形状
  • 批准号:
    7516837
  • 财政年份:
    1976
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了