THREE-DIMENSIONALLY STACKED IMAGE PROCESSING SYSTEM WITH LEARNING FUNCTION

具有学习功能的三维堆叠图像处理系统

基本信息

  • 批准号:
    09305023
  • 负责人:
  • 金额:
    $ 23.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

We have proposed a new image processing chip with three-dimensional structure. This chip consists of four layers of image sensor array, amplifier and AD converter array, resister (data latch) array and processor array. These four layers are connected vertically using high density of vertical interconnections. Therefore, 2D image signal data are simultaneously transferred in vertical direction and processed in parallel in each layer. In order to transfer the 2D output data from this chip to other chips with high speed and high efficiency, the 2D output data are compressed and reconstructed using a neural network. It was confirmed that the learning and association function of neural network is useful for the data compression and reconstruction. We have developed a new 3D integration technology to realize such image processing chip with learning and association function. In this 3D integration technology, the device wafer with the buried interconnections are glued to a quartz glass and then thinned from the back side using the mechanical grinding and CMP. The micro bumps are formed on the bottom of the buried interconnections at the back side. This thinned device wafer is glued to the another device wafer after a careful wafer alignment. By repeating this sequence, the 3D stacked wafer is obtained. We fabricated the 3D stacked image sensor test chip using this 3D integration technology. The electrical characteristics of this stacked 3D image sensor test chip were evaluated through the buried interconnections and micro bumps.
我们提出了一种新的图像处理芯片与三维结构。该芯片由图像传感器阵列、放大器和AD转换器阵列、电阻(数据锁存器)阵列和处理器阵列四层组成。这四个层使用高密度的垂直互连来垂直连接。因此,2D图像信号数据在垂直方向上被同时传送,并且在每层中被并行处理。为了将该芯片的二维输出数据高速、高效地传输到其他芯片,采用神经网络对二维输出数据进行压缩和重构。结果表明,神经网络的学习和联想功能有利于数据的压缩和重构。我们开发了一种新的3D集成技术来实现这种具有学习和联想功能的图像处理芯片。在这种3D集成技术中,具有掩埋互连的器件晶片被粘合到石英玻璃上,然后使用机械研磨和CMP从背面减薄。微凸块形成在背面的掩埋互连的底部上。在仔细的晶片对准之后,将该减薄的器件晶片胶合到另一器件晶片。通过重复该序列,获得3D堆叠晶片。利用这种三维集成技术制作了三维叠层图像传感器测试芯片。通过埋置互连和微凸点来评估该堆叠式3D图像传感器测试芯片的电特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.W.Lee,T.Nakamura,K.T.Park,K.Y.Kim,H.Kurino,M.Koyanagi他3人: "Development of Three-Dimensional Integration Technology for Highly Parallel Image-Processing Chip"Jpn.J.Appl.Phys.Vol.39 No.4B. 印刷中 (2000)
K.W.Lee、T.Nakamura、K.T.Park、K.Y.Kim、H.Kurino、M.Koyanagi 等 3 人:“高度并行图像处理芯片的三维集成技术的开发”Jpn.J.Appl.Phys.Vol。 39 No.4B 印刷中(2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T,Matsumoto,M.Koyanagi,et.al: "New Three-Dimensional Wafer Bonding Technology Using the Adhesive Injection Method" Japanese Journal of Applied Phvsics. 1217-1221 (1998)
T,Matsumoto,M.Koyanagi,et.al:“使用粘合剂注射方法的新型三维晶圆键合技术”日本应用物理学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Koyanagi: "Multi-Chip Module with Optical Interconnection for Parallel Processor System" 1998 IEEE International Solid-State Circuits Conference Digest of Technical Papers. 92-93 (1998)
M.Koyanagi:“用于并行处理器系统的具有光学互连的多芯片模块”1998 年 IEEE 国际固态电路会议技术论文摘要。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Matsumoto, M. Satoh, K. Sakuma, H. Kurino, N. Miyakawa, H. Itani, M. Koyanagi: "New Three-Dimensional Wafer Bonding Technology Using the Adhesive Injection Method"Japanese Journal of Applied Physics. Vol. 37, 1(3B). 1217-1221 (1998)
T. Matsumoto、M. Satoh、K. Sakuma、H. Kurino、N. Miyakawa、H. Itani、M. Koyanagi:“使用粘合剂注入方法的新型三维晶圆键合技术”日本应用物理学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOYANAGI Mitsumasa其他文献

KOYANAGI Mitsumasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOYANAGI Mitsumasa', 18)}}的其他基金

Constitutive approach for investigating orphan receptors using photoreceptor proteins and light as an input
使用光感受器蛋白和光作为输入来研究孤儿受体的本构方法
  • 批准号:
    16KT0074
  • 财政年份:
    2016
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of the diversity of visual and non-visual UV reception in jumping spiders
跳蛛视觉和非视觉紫外线接收多样性的研究
  • 批准号:
    26291070
  • 财政年份:
    2014
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional analysis of genetic variation in melanoposin, a non-visual photoreceptor protein for circadian photoentrainment and its implication for phenotype
黑素红蛋白(一种昼夜节律光诱导的非视觉光感受器蛋白)遗传变异的功能分析及其对表型的影响
  • 批准号:
    23657175
  • 财政年份:
    2011
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Three-Dimensionarlly Stacked Optoelectronic System-on-Chip Fabricated Using Grapho-Assembly
使用图形组装制造的三维堆叠光电片上系统
  • 批准号:
    21226009
  • 财政年份:
    2009
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Functional analyses of rhodops in-related non-visual photopigments at molecular and neural levels.
在分子和神经水平上对相关非视觉感光色素中的红紫光进行功能分析。
  • 批准号:
    20770057
  • 财政年份:
    2008
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
High Performance Parallel Processor System Using Three-Dimensional Processor Chip
采用三维处理器芯片的高性能并行处理器系统
  • 批准号:
    15106006
  • 财政年份:
    2003
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Wafer-Scale Dynamic Neural-Network-System with Optical Waveguide
具有光波导的晶圆级动态神经网络系统
  • 批准号:
    12305024
  • 财政年份:
    2000
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Wafer Level Parallel Processing System Using Cubic Integration Technology
采用三次积分技术的晶圆级并行处理系统
  • 批准号:
    11355015
  • 财政年份:
    1999
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
HIGH SPEED PARALLEL COMPUTER SYSTEM USING 3-DIMENTIONAL INTEGLATED SHARED MEMORY
使用3维集成共享存储器的高速并行计算机系统
  • 批准号:
    08505003
  • 财政年份:
    1996
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Continuing Grant
I-Corps: Real-time visual feedback for speech learning
I-Corps:语音学习的实时视觉反馈
  • 批准号:
    2408991
  • 财政年份:
    2024
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Standard Grant
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
  • 批准号:
    EP/Z000653/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Research Grant
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 23.74万
  • 项目类别:
    EU-Funded
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Standard Grant
Development of real-time dosimetry system for radiotherapy using deep learning
利用深度学习开发放射治疗实时剂量测定系统
  • 批准号:
    23K07109
  • 财政年份:
    2023
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
  • 批准号:
    10057969
  • 财政年份:
    2023
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Collaborative R&D
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
  • 批准号:
    10064479
  • 财政年份:
    2023
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Collaborative R&D
Machine Learning for Real Time Volcano-Seismic Monitoring.
用于实时火山地震监测的机器学习。
  • 批准号:
    2843375
  • 财政年份:
    2023
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Studentship
CAREER: Learning for Real-Time Embedded Optimization
职业:学习实时嵌入式优化
  • 批准号:
    2239771
  • 财政年份:
    2023
  • 资助金额:
    $ 23.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了