Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
基本信息
- 批准号:10161345
- 负责人:
- 金额:$ 33.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-03-21
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAssessment toolBehavioralBiological MarkersCOVID-19COVID-19 pandemicCalibrationCaringCenters for Disease Control and Prevention (U.S.)Cessation of lifeCharacteristicsChiropteraClinicalClinical ManagementClinical TrialsCommunicable DiseasesCountryCritical IllnessDataDiagnostic testsDiseaseDisease OutbreaksEarly identificationElectronic Health RecordEngineeringEpidemicEpidemiologyEvaluationExperimental DesignsExposure toFutureGaussian modelGeographic LocationsGeographyHealthHealthcareHeterogeneityHospitalsIndividualInfectionInterventionLeadMachine LearningMeasuresMethodsModelingNational Institute of General Medical SciencesNatureNew YorkNew York CityParentsPatient CarePatient Care ManagementPatient riskPatientsPatternPhasePoliciesPopulationPopulation HeterogeneityPreparationPresbyterian ChurchProcessProxyPublic HealthQuasi-experimentRecoveryReportingReproductionResource AllocationResourcesRiskRisk AssessmentSeveritiesSocial DistanceSourceStatistical ModelsSubgroupSymptomsTechniquesTestingTimeTriageUnited StatesVaccinesValidationVirusVirus DiseasesWorkalgorithm developmentanalytical methodbig biomedical datacoronavirus diseasedemographicsdesigndisease transmissiondisorder riskeconomic determinanteconomic indicatoreffective therapyepidemiological modelhigh risk populationindividual patientinnovationintervention effectlearning strategymachine learning algorithmmodel buildingmortalitymultiple data sourcesnovel coronavirusoutcome forecastpandemic diseasepersonalized medicinepredictive modelingpublic health interventionrecruitresponsesocialsocial determinantsstatistical learningstatisticstooltransmission processvectorweb site
项目摘要
Project Summary:
Coronavirus disease 19 (COVID-19) has created a major public health crisis around the world. The novel
coronavirus was observed to have a long incubation period and extremely infectious during this period. No proven
effective treatment or vaccine is available. Massive public interventions have been implemented in many countries
and states in the United States (US) at different phases of the outbreak with varying combinations of social dis-
tancing, mobility restriction and population behavioral change. Decisions on how to implement these interventions
(e.g., when to impose and relax mitigation measures) rely on important statistics of COVID epidemiology (e.g.,
effective reproduction number) that characterize and predict the course of COVID-19 outbreak. However, there is
a lack of robust and parsimonious model of COVID epidemic that can accurately reflect the heterogeneity between
susceptible populations and regions (e.g., demographics, healthcare capacity, social and economic determinants).
There is no rigorous study to guide precision public health interventions that are tailored to a population or region
depending on their characteristics. Furthermore, due to the non-randomized nature of public health interventions,
it is critical to account for biases and confounding when comparing mitigation measures of COVID-19 across re-
gions. To address these challenges, this project develops robust and generalizable analytic methods to evaluate
public health interventions and assess individual patient risks of COVID-19 infection and complications. In Aim 1,
we will develop dynamic and robust statistical models to predict the disease epidemic. The models will estimate
the date of the first unknown infection case, instantaneous effective reproduction number, and account for the incu-
bation period of COVID-19 virus. Furthermore, heterogeneity in population's demographics, social and economic
indicators, healthcare capacity and geographic locations will be incorporated to reflect their impacts on COVID
epidemic. Under a longitudinal quasi-experimental design, we will provide valid inference for comparing public
health interventions implemented at different regions while accounting for confounding bias. Multiple sources of
data from different states in the US will be analyzed to empirically test which states' response strategies are more
effective and in which subpopulation. In Aim 2, we will focus on developing precise risk assessment tool of individ-
ual COVID-19 patients using electronic health records (EHRs) collected at New York Presbyterian hospital in New
York City, an epicenter of COVID-19. We will engineer features of patient's pre-conditions associated with severe
COVID complications, recovery, or death. More importantly, we will engineer features that represent proxies of virus
exposures from patients' geographic information. We will use machine learning techniques to create quantitative
summaries of patient prognosis (e.g., transitioning to serious clinical stages, discharge, death). We will use inter-
nal cross-validation and external calibration to validate developed algorithms. The project will generate evidence
to guide precision public health intervention, optimal patient care, and efficient healthcare resource allocation in
anticipation of a second wave of COVID epidemic and in preparation of other infectious disease outbreaks.
项目概要:
冠状病毒病19(COVID-19)在世界各地造成了重大的公共卫生危机。小说
冠状病毒的潜伏期长,在此期间极具传染性。没有经过验证的
有效的治疗方法或疫苗。许多国家实施了大规模的公共干预措施
和美国各州在疫情的不同阶段,有不同的社会疾病组合,
流动限制和人口行为变化。关于如何实施这些干预措施的决定
(e.g.,何时实施和放松缓解措施)依赖于COVID流行病学的重要统计数据(例如,
有效繁殖数)来表征和预测COVID-19爆发的过程。不过有
缺乏稳健和简约的COVID流行病模型,可以准确反映
易感人群和区域(例如,人口统计、医疗保健能力、社会和经济决定因素)。
没有严格的研究来指导针对某一人群或地区的精准公共卫生干预措施
这取决于它们的特性。此外,由于公共卫生干预的非随机性,
在比较不同地区的COVID-19缓解措施时,
gions。为了应对这些挑战,该项目开发了强大的和可推广的分析方法来评估
公共卫生干预措施,并评估个体患者感染COVID-19和并发症的风险。在目标1中,
我们会发展动态和稳健的统计模式,以预测疾病的流行。模型将估计
第一个未知感染病例的日期,瞬时有效繁殖数,以及对感染的解释,
COVID-19病毒的感染期。此外,人口统计、社会和经济方面的异质性
将纳入指标、医疗能力和地理位置,以反映其对COVID的影响
疫情在纵向准实验设计下,我们将为比较公众
在不同地区实施的卫生干预措施,同时考虑到混杂的偏见。多种来源的
来自美国不同州的数据将进行分析,以实证检验哪些州的应对策略更
有效性和在哪个亚群中。在目标2中,我们将专注于开发精确的个体风险评估工具,
使用在纽约纽约长老会医院收集的电子健康记录(EHR)的年度COVID-19患者
约克市,COVID-19的震中。我们将工程师的特点,病人的先决条件相关的严重
COVID并发症、康复或死亡。更重要的是,我们将设计代表病毒代理的功能,
患者的地理信息。我们将使用机器学习技术来创建定量的
患者预后的概要(例如,转化为严重临床阶段、出院、死亡)。我们将使用-
最终交叉验证和外部校准,以验证开发的算法。该项目将产生证据
指导精确的公共卫生干预,最佳的病人护理和有效的医疗资源分配,
预期第二波COVID疫情及为其他传染病爆发作好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanjia Wang其他文献
Yuanjia Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanjia Wang', 18)}}的其他基金
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10609084 - 财政年份:2021
- 资助金额:
$ 33.11万 - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10208246 - 财政年份:2021
- 资助金额:
$ 33.11万 - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10454322 - 财政年份:2021
- 资助金额:
$ 33.11万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
9891071 - 财政年份:2018
- 资助金额:
$ 33.11万 - 项目类别:
Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
- 批准号:
10654927 - 财政年份:2018
- 资助金额:
$ 33.11万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8083280 - 财政年份:2011
- 资助金额:
$ 33.11万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8488504 - 财政年份:2011
- 资助金额:
$ 33.11万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8299433 - 财政年份:2011
- 资助金额:
$ 33.11万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8663321 - 财政年份:2011
- 资助金额:
$ 33.11万 - 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
- 批准号:
10583203 - 财政年份:2011
- 资助金额:
$ 33.11万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Research Grant














{{item.name}}会员




