Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
基本信息
- 批准号:10654927
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-08-27
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAccelerationAchievementAddressAdherenceAdverse eventAffectAlgorithmsAmericanAtherosclerosisBenefits and RisksCenter for Translational Science ActivitiesChronic Kidney FailureClinical TrialsComplementComputer softwareDataData SetDatabasesDecision MakingDiabetes MellitusDimensionsDisadvantagedDiseaseEffectivenessElectronic Health RecordEnsureEpidemicEquilibriumExclusionFeedbackFundingGoalsGuidelinesHealth StatusHypoglycemiaIndividualInequalityJointsLeadLearningLengthMaintenanceManaged CareMedicalMedical centerMethodsModelingNon-Insulin-Dependent Diabetes MellitusObesityObservational StudyOhioOutcomePatient CarePatient PreferencesPatientsPatternPerformancePopulationPopulation DistributionsPopulation HeterogeneityProceduresProcessPublic HealthQuality ControlRandomized, Controlled TrialsRecommendationRiskSafetySample SizeSamplingSelection BiasStatistical MethodsSurveysTimeTreatment ProtocolsUncertaintyUniversitiesUpdatealgorithm developmentcardiovascular disorder riskclinical decision-makingclinical practicecohortcomorbiditycost efficientdata modelingdisease registryefficacy outcomesfeature selectionimprovedindividual patientindividualized medicineinsightknowledge baselearning algorithmlearning strategymachine learning algorithmmachine learning methodmethod developmentnoveloptimal treatmentspatient orientedpatient populationpersonalized carepersonalized decisionprecision medicinepreferenceprospectivesemiparametricside effectsimulationsocial health determinantssoftware developmentstatistical and machine learningstatistical learningtheoriestooltranslational clinical trialtreatment choicetreatment effecttreatment guidelinestreatment patterntreatment strategy
项目摘要
Project Summary/Abstract
Type 2 diabetes (T2D) is a global epidemic affecting approximately 462 million individuals world-wide. Cur-
rent medical treatment guidelines rely largely on data from randomized controlled trials (RCTs) that study average
effects, which is far from adequate for making individualized decisions for real world patients. This limitation is
even worse for discovering dynamic treatment regimens (DTRs) in a heterogeneous population where treatment
decisions are made over one or more stages of disease course. This limitation can be partially addressed by sup-
plementing RCT data with real world data (RWD), such as disease registries, prospective observational studies,
surveys and electronic health records, to improve medical decision making. Despite of the promise of combining
RWD and RCT, there are several significant challenges in method and algorithm development. These include
lack of generalizability or practical utility for the findings from RCTs when applied to real world patients; bias due
to unobserved confounders; and concern about long-term side effects/risks. This proposal aims to address each
of these challenges. Specifically, in Aim 1, we address the generalizability issue by proposing a novel framework
that uses evidence from RWD to improve learning DTRs in the trials. The framework uses RWD to select infor-
mative tailoring features, balance population distributions and improve statistical efficiency through doubly robust
estimation. In Aim 2, to improve the practical utility of DTRs, we propose a robust method to first infer individual
treatment choice/preference from RWD, then incorporate this estimated preference into learning DTRs using the
trial data. The resulting DTRs are not only statistically valid but also compatible with patient/clinician preference
in real world populations. In Aim 3, to lessen the bias due to hidden confounders in RWD, we propose joint
semiparametric models to combine the trial data with RWD; the models we propose allow different magnitudes
of treatment effect sizes and control for possible bias due to hidden confounders in RWD. In Aim 4, to address
the concern about long-term risks, we consider a general procedure for estimating DTRs that maximizes efficacy
outcomes while ensuring that long-term side effects associated with the recommended DTRs remain below a
certain threshold. We then propose a novel simultaneous learning algorithm to estimate the optimal DTRs across
all stages. For all four aims, we will provide rigorous assumptions and theoretical justifications using tools from
concentration inequalities, statistical learning theory, empirical processes and semiparametric inference. We will
conduct extensive simulation studies to study the performance of the proposed approaches in a variety of set-
tings, and compare their performance with off-the-shelf methods. We will apply the proposed methods to estimate
DTRs for T2D using clinical trial data and RWD taken from electronic health records in Columbia University and
Ohio State University medical centers as well as Allof Us precision medicine study. Our methods and findings will
be publicized through software development; the software will receive frequent updates based on user feedback.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanjia Wang其他文献
Yuanjia Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanjia Wang', 18)}}的其他基金
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10609084 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10454322 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10208246 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
10161345 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
9891071 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8083280 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8488504 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8299433 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
- 批准号:
10583203 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8663321 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




