Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
基本信息
- 批准号:8299433
- 负责人:
- 金额:$ 26.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressBindingChargeClinical ResearchCohort StudiesCommunitiesComputer softwareDataDiseaseEventFamilyFamily StudyFamily memberGenderGenesGeneticGenotypeHeightHuntington DiseaseInfectionLawsLeast-Squares AnalysisListeria monocytogenesLiteratureMapsMethodologyMethodsMetricModelingMusMutationOutcomeParkinson DiseasePenetrancePerformancePhenotypePlantsProbabilityQuantitative Trait LociRare DiseasesRecombination FractionRecording of previous eventsRelative (related person)ResearchResidual stateRiceRisk EstimateSamplingSeriesSpecific qualifier valueStatistical MethodsTestingTimeUniversitiesWeightbasefrailtygenetic epidemiologyindexinginterestmembermutation carrierprobandprogramsresearch studysimulationtheoriestooltraituser-friendly
项目摘要
DESCRIPTION (provided by applicant): This proposal develops a series of new semiparametric efficient methods for genetic data where subjects' genotypes are not observed therefore phenotype data arise from a mixture of genotype-specific subpopulations. One example is data collected in a kin-cohort study, where the scientific interest is in estimating the distribution function of a trait or time to developing a disease for deleterious mutation carriers (penetrance function). In a kin- cohort study, index subjects (probands) possibly enriched with mutation carriers are sampled and genotyped. Disease history in relatives of the probands is collected, but the relatives are not genotyped therefore it may be unknown whether they carry a mutation. However, one can calculate the probability of each relative being a mutation carrier using the proband's genotype and Mendelian laws. Another example is interval mapping of quantitative traits (QTL). In such studies, genotype at a QTL is unobserved therefore the trait distribution takes the form of a mixture of QTL-genotype specific distributions. The probability of the QTL having a specific geno- type is computed based on marker genotypes and recombination fractions between the marker and the QTL. Interest is on estimating the QTL genotype-specific distributions. A common feature of these examples is that the scientific interest is in inference of genotype-specific subpopulations but it is unknown which subpopulation each observation belongs to. The probability of each observation being in any subpopulation varies and can be estimated. Without making a prespecified, error prone parametric assumption on these genotype-specific distributions, the only available statistical methods in the literature are two distinct nonparametric maximum like- lihood estimators (NPMLE1, NPMLE2). However, we will show that NPMLE1 is not efficient, and NPMLE2 is not consistent. There is therefore great need to develop valid and efficient statistical tools for such data. We use modern semiparametric theory to carry out a formal semiparametric analysis where we define a rich class of estimators. We show that any least squares based estimator is a member of this estimation class. We construct an optimal member of this family which obtains the minimum estimation variance hence reaches the semipara- metric efficiency bound. For censored outcomes, we propose a semiparametric efficient estimator given an influence function of the complete uncensored data. We propose an inverse probability weighting estimator, and add an augmentation term to obtain optimal efficiency. We also construct an imputation estimator which is easy to implement and does not require additional model assumption for the imputation step. Furthermore we propose methods to handle other observed covariates such as gender and additional residual correlation among family members. We also develop a series of tests for equality of two distributions at single or multi- ple time points simultaneously and an overall test of two distributions being equal at all time points. We will apply apply developed methods to analyze a kin-cohort study on Parkinson's disease, a large family study on Huntington's disease and two QTL studies.
描述(由申请人提供):这项建议开发了一系列新的半参数有效的遗传数据方法,在这些方法中,受试者的基因类型没有被观察到,因此表型数据来自于基因特定亚群的混合。一个例子是在一项亲属队列研究中收集的数据,其中科学兴趣是估计一种特征或时间的分布函数,以患有害突变携带者的疾病(外显函数)。在一项亲属队列研究中,可能富含突变携带者的指标受试者(先证者)被抽样并进行基因分型。收集先证者亲属的病史,但亲属没有基因分型,因此可能不知道他们是否携带突变。然而,人们可以使用先证者的基因型和孟德尔定律来计算每个亲属成为突变携带者的概率。另一个例子是数量性状的区间定位(QTL)。在这样的研究中,没有观察到QTL的基因型,因此性状分布采取QTL-基因型特定分布的混合形式。根据标记的基因类型和标记与QTL之间的重组比例来计算该QTL具有特定基因类型的概率。人们感兴趣的是估计QTL特定基因型的分布。这些例子的一个共同特征是,科学兴趣在于推断特定于基因型的亚群,但尚不清楚每个观察结果属于哪个亚群。每个观察值在任何子总体中的概率是不同的,并且可以估计。在不对这些特定的基因型分布进行预先指定的、容易出错的参数假设的情况下,文献中唯一可用的统计方法是两个截然不同的非参数最大似然估计(NPMLE1、NPMLE2)。然而,我们将证明NPMLE1是不有效的,并且NPMLE2是不一致的。因此,迫切需要为这类数据开发有效和高效的统计工具。我们使用现代半参数理论来进行形式化的半参数分析,其中我们定义了丰富的估计类。我们证明了任何基于最小二乘的估计量都是这个估计类的一个成员。我们构造了这个族中的一个最优成员,它可以获得最小的估计方差,从而达到半参数效率界。对于删失结果,我们给出了完全未删失数据的影响函数的半参数有效估计。我们提出了一种逆概率加权估计器,并增加了增广项以获得最优的效率。我们还构造了一个易于实现且不需要额外的模型假设的补偿估计器。此外,我们还提出了处理其他观察到的协变量的方法,如性别和家庭成员之间的附加残差相关性。我们还开发了一系列关于两个分布在单个或多个时间点同时相等的检验,以及两个分布在所有时间点都相等的总体检验。我们将应用开发的方法来分析一个关于帕金森氏病的亲属队列研究,一个关于亨廷顿病的大型家庭研究和两个QTL研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanjia Wang其他文献
Yuanjia Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanjia Wang', 18)}}的其他基金
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10609084 - 财政年份:2021
- 资助金额:
$ 26.71万 - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10208246 - 财政年份:2021
- 资助金额:
$ 26.71万 - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10454322 - 财政年份:2021
- 资助金额:
$ 26.71万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
10161345 - 财政年份:2018
- 资助金额:
$ 26.71万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
9891071 - 财政年份:2018
- 资助金额:
$ 26.71万 - 项目类别:
Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
- 批准号:
10654927 - 财政年份:2018
- 资助金额:
$ 26.71万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8083280 - 财政年份:2011
- 资助金额:
$ 26.71万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8488504 - 财政年份:2011
- 资助金额:
$ 26.71万 - 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
- 批准号:
10583203 - 财政年份:2011
- 资助金额:
$ 26.71万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8663321 - 财政年份:2011
- 资助金额:
$ 26.71万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 26.71万 - 项目类别:
Research Grant














{{item.name}}会员




