Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.

未观察到的基因型的基因型特异性分布的有效方法。

基本信息

  • 批准号:
    8083280
  • 负责人:
  • 金额:
    $ 28.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-15 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal develops a series of new semiparametric efficient methods for genetic data where subjects' genotypes are not observed therefore phenotype data arise from a mixture of genotype-specific subpopulations. One example is data collected in a kin-cohort study, where the scientific interest is in estimating the distribution function of a trait or time to developing a disease for deleterious mutation carriers (penetrance function). In a kin- cohort study, index subjects (probands) possibly enriched with mutation carriers are sampled and genotyped. Disease history in relatives of the probands is collected, but the relatives are not genotyped therefore it may be unknown whether they carry a mutation. However, one can calculate the probability of each relative being a mutation carrier using the proband's genotype and Mendelian laws. Another example is interval mapping of quantitative traits (QTL). In such studies, genotype at a QTL is unobserved therefore the trait distribution takes the form of a mixture of QTL-genotype specific distributions. The probability of the QTL having a specific geno- type is computed based on marker genotypes and recombination fractions between the marker and the QTL. Interest is on estimating the QTL genotype-specific distributions. A common feature of these examples is that the scientific interest is in inference of genotype-specific subpopulations but it is unknown which subpopulation each observation belongs to. The probability of each observation being in any subpopulation varies and can be estimated. Without making a prespecified, error prone parametric assumption on these genotype-specific distributions, the only available statistical methods in the literature are two distinct nonparametric maximum like- lihood estimators (NPMLE1, NPMLE2). However, we will show that NPMLE1 is not efficient, and NPMLE2 is not consistent. There is therefore great need to develop valid and efficient statistical tools for such data. We use modern semiparametric theory to carry out a formal semiparametric analysis where we define a rich class of estimators. We show that any least squares based estimator is a member of this estimation class. We construct an optimal member of this family which obtains the minimum estimation variance hence reaches the semipara- metric efficiency bound. For censored outcomes, we propose a semiparametric efficient estimator given an influence function of the complete uncensored data. We propose an inverse probability weighting estimator, and add an augmentation term to obtain optimal efficiency. We also construct an imputation estimator which is easy to implement and does not require additional model assumption for the imputation step. Furthermore we propose methods to handle other observed covariates such as gender and additional residual correlation among family members. We also develop a series of tests for equality of two distributions at single or multi- ple time points simultaneously and an overall test of two distributions being equal at all time points. We will apply apply developed methods to analyze a kin-cohort study on Parkinson's disease, a large family study on Huntington's disease and two QTL studies. PUBLIC HEALTH RELEVANCE: This proposal develops a series of new semiparametric efficient methods for genetic data where subjects' genotypes are not observed therefore trait data arise from a mixture of genotype-specific subpopulations. The methodologies can be applied to estimate risk of developing a disease for deleterious mutation carriers.
描述(由申请人提供):该提案为遗传数据开发了一系列新的半参数有效方法,其中未观察到受试者的基因型,因此表型数据来自基因型特异性亚群的混合物。一个例子是在亲属队列研究中收集的数据,其中科学兴趣是估计有害突变携带者发展疾病的特征或时间的分布函数(突变函数)。在亲属队列研究中,对可能富含突变携带者的索引受试者(先证者)进行采样和基因分型.收集先证者亲属的疾病史,但亲属未进行基因分型,因此可能不知道他们是否携带突变。然而,可以使用先证者的基因型和孟德尔定律计算每个亲属是突变携带者的概率。另一个例子是数量性状(QTL)的区间作图。在这样的研究中,QTL的基因型是未观察到的,因此性状分布采取QTL-基因型特异性分布的混合形式。根据标记基因型和标记与QTL之间的重组分数计算QTL具有特定基因型的概率。感兴趣的是估计QTL基因型特异性分布。这些例子的一个共同特征是,科学兴趣在于推断基因型特异性亚群,但不知道每个观察结果属于哪个亚群。每个观测值在任何子总体中的概率各不相同,并且可以估计。在没有对这些基因型特异性分布进行预先指定的、容易出错的参数假设的情况下,文献中唯一可用的统计方法是两种不同的非参数最大似然估计(NPMLE 1,NPMLE 2)。然而,我们将证明NPMLE 1不是有效的,NPMLE 2是不一致的。因此,迫切需要为这些数据开发有效和高效的统计工具。我们使用现代半参数理论进行正式的半参数分析,我们定义了丰富的估计类。我们表明,任何最小二乘估计是这个估计类的成员。我们构造了这个族的一个最优成员,使估计方差最小,从而达到半参数有效界。对于删失结果,我们提出了一个半参数有效估计的完全未删失数据的影响函数。我们提出了一种逆概率加权估计,并增加了一个增广项,以获得最佳的效率。我们还构造了一个插补估计,这是很容易实现的,不需要额外的模型假设的插补步骤。此外,我们还提出了处理其他观察到的协变量,如性别和家庭成员之间的额外剩余相关性的方法。我们还开发了一系列的两个分布在单个或多个时间点同时相等的检验和两个分布在所有时间点相等的总体检验。我们将应用先进的方法分析帕金森病的亲属队列研究,亨廷顿病的大家系研究和两个QTL研究。 公共卫生关系:该方案发展了一系列新的半参数有效方法,用于遗传数据,其中受试者的基因型未被观察到,因此性状数据来自于基因型特异性亚群的混合物。该方法可用于评估有害突变携带者发生疾病的风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanjia Wang其他文献

Yuanjia Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanjia Wang', 18)}}的其他基金

Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
  • 批准号:
    10609084
  • 财政年份:
    2021
  • 资助金额:
    $ 28.05万
  • 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
  • 批准号:
    10208246
  • 财政年份:
    2021
  • 资助金额:
    $ 28.05万
  • 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
  • 批准号:
    10454322
  • 财政年份:
    2021
  • 资助金额:
    $ 28.05万
  • 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
  • 批准号:
    10161345
  • 财政年份:
    2018
  • 资助金额:
    $ 28.05万
  • 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
  • 批准号:
    9891071
  • 财政年份:
    2018
  • 资助金额:
    $ 28.05万
  • 项目类别:
Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
  • 批准号:
    10654927
  • 财政年份:
    2018
  • 资助金额:
    $ 28.05万
  • 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
  • 批准号:
    8488504
  • 财政年份:
    2011
  • 资助金额:
    $ 28.05万
  • 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
  • 批准号:
    8299433
  • 财政年份:
    2011
  • 资助金额:
    $ 28.05万
  • 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
  • 批准号:
    8663321
  • 财政年份:
    2011
  • 资助金额:
    $ 28.05万
  • 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
  • 批准号:
    10583203
  • 财政年份:
    2011
  • 资助金额:
    $ 28.05万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了