Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
基本信息
- 批准号:10208246
- 负责人:
- 金额:$ 41.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-20 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdvocateAttentionBehaviorBehavior TherapyBehavioralBiologicalBiological MarkersBiologyBrainCharacteristicsChronicClassificationClinicalClinical TrialsClinical Trials DatabaseCollaborationsComplexConfidence IntervalsDataData SetData SourcesDecision MakingDiagnosticDimensionsDiseaseEvaluationFaceFunctional disorderFutureGoalsHeterogeneityLearningMachine LearningMajor Depressive DisorderMeasuresMental disordersMethodsModalityModelingNational Institute of Mental HealthNeuropsychological TestsOutcomePatientsPharmacologyPhasePsychiatryPsychological TransferPublic HealthRandomizedRandomized Controlled TrialsRecording of previous eventsReproducibilityResearchResearch Domain CriteriaResearch PersonnelStrategic PlanningSumSymptomsTrainingTreatment outcomeVariantbehavior testbehavioral phenotypingcognitive controlcomorbiditydata archivedenoisingdesigndisabilitydisability-adjusted life yearseffective therapyemotion regulationimprovedindividual patientindividualized medicineinnovationmachine learning methodmental disorder diagnosismental health centermultimodal dataneuroimagingneurophysiologynoveloptimal treatmentspatient populationpatient variabilitypersonalized medicinepsychosocialresponsesecondary outcomestatistical and machine learningtooltreatment optimizationtreatment responsetreatment strategytrend
项目摘要
Project Summary:
Mental disorders cause immense disability, accounting for 183.9 million disability-adjusted life-years world-
wide. Among currently available pharmacological and behavioral interventions, no single therapy is universally ef-
fective. Moreover, treatment responses are far from adequate across mental disorders. As such, there is an urgent
need to optimize treatment responses. Various factors appear to be associated with positive treatment responses
for mental disorders, thus providing evidence for improving response rate by incorporating patient-specific charac-
teristics in treatment decisions in an effort to achieve precision psychiatry. However, existing methods to incorpo-
rate patient-specific characteristics do not adequately address the unique challenges facing precision psychiatry.
To point, treatment decision making for mental disorders is inevitably confronted by extensive diagnostic hetero-
geneity, substantial between-patient variation in biological and clinical manifestations of disease, and mismatch
between diagnostic categorization and the underlying pathophysiology. To address these emerging challenges,
this proposal aims to develop novel machine learning and statistical inference methods to build individualized treat-
ment rules to account for the extensive heterogeneity and between-patient variability and integrate evidence from
multi-domain brain and behavioral data across several disorders. Specifically, we aim to: (1) learn optimal latent
representation of patients through a probabilistic generative model that has theoretical support under the National
Institute of Mental Health Strategic Plan on Research Domain Criteria (RDoC); (2) incorporate prior optimal treat-
ment information from the non-randomized phase of clinical trials through targeted transfer learning; (3) synthesize
individualized treatment decision rules learned from multiple studies; and (4) provide rigorous statistical inference
of fitted decision rules. Following the RDoC call for centering mental health research around latent constructs
shared across disorders, the methods developed here will be applied to a range of randomized controlled trials
(RCTs) of patients with major depressive disorder and other co-morbid disorders, including multiple high-quality
RCTs with multi-modality data (e.g., symptoms, behavioral tests, psychosocial measures, brain measures). This
strategy will allow for examination of treatment strategies for constructs shared across disorders and thus will in-
crease generalizability. In sum, this research will use machine learning approaches and statistical inference in
an effort to better leverage the complex interplay between biomarkers and clinical manifestations in the context of
precision psychiatry, with the goal of selecting the best treatments for patients with mental disorders.
项目总结:
精神障碍导致巨大残疾,占全球残疾调整寿命年的1.839亿年--
很宽。在目前可用的药物和行为干预措施中,没有一种单一的治疗方法是通用的。
很有感染力。此外,精神障碍患者的治疗反应远远不够。因此,有一个紧急情况
需要优化治疗反应。各种因素似乎与积极的治疗反应有关。
对于精神障碍,从而为通过结合患者特有的fi特征来提高应答率提供证据。
在治疗决策中使用术语,以努力实现精确的精神病学。然而,现有的方法来防止-
Rate Patient-specific特征不能充分解决精确精神病学面临的独特挑战。
需要指出的是,精神障碍的治疗决策不可避免地面临广泛的诊断异质性。
遗传性,患者之间在疾病的生物学和临床表现上的巨大差异,以及不匹配
在诊断分类和潜在的病理生理学之间。为了应对这些新出现的挑战,
该建议旨在开发新的机器学习和统计推理方法,以建立个性化治疗-
治疗规则,以解释广泛的异质性和患者之间的变异性,并整合来自
跨多个障碍的多领域大脑和行为数据。具体地说,我们的目标是:(1)学习最优潜伏期
通过概率生成模型来表示患者,该模型有理论支持
精神卫生研究所研究领域标准战略计划(RDoC);(2)纳入先前的最佳治疗-
通过定向迁移学习从临床试验的非随机阶段获得信息;(3)综合
从多项研究中学习的个体化治疗决策规则;以及(4)提供严格的统计推断
fi制定了决策规则。遵循RDoC的呼吁,将心理健康研究的中心放在潜在结构上
在疾病之间共享,这里开发的方法将被应用于一系列随机对照试验
(RCT)严重抑郁障碍和其他共病障碍患者,包括多个高质量
具有多模式数据(例如,症状、行为测试、心理社会测量、大脑测量)的随机对照试验。这
战略将允许检查跨障碍共享结构的治疗战略,从而将-
折痕可泛化。综上所述,本研究将使用机器学习方法和统计推理
努力更好地利用生物标记物和临床表现之间的复杂相互作用
精准精神病学,目的是为精神障碍患者选择最佳治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanjia Wang其他文献
Yuanjia Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanjia Wang', 18)}}的其他基金
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10609084 - 财政年份:2021
- 资助金额:
$ 41.83万 - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10454322 - 财政年份:2021
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
10161345 - 财政年份:2018
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
9891071 - 财政年份:2018
- 资助金额:
$ 41.83万 - 项目类别:
Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
- 批准号:
10654927 - 财政年份:2018
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8083280 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8488504 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8299433 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8663321 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
- 批准号:
10583203 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant