Development of Technologies for Efficient In Vivo Prime Editing

高效体内 Prime 编辑技术的开发

基本信息

项目摘要

PROJECT SUMMARY Genome editing is revolutionizing biomedicine and biotechnology by enabling the precise modification of genomic DNA in living cells. While various genome-editing tools have been developed over the past decade, the CRISPR-Cas9 system has emerged as a particularly versatile and efficient technology for editing DNA. Nonetheless, limitations derived from its reliance on DNA double strand breaks (DSB), which can lead to unpredictable editing outcomes and even chromosomal translocations, could limit its applications. Base editors (BEs) and prime editors (PEs) are two novel classes of genome-editing tools capable of introducing precise single-base conversion in DNA without the requirement of a DSB. PEs, in particular, provide greater flexibility than BEs, owing to their ability to introduce any type of base conversion and even programable small insertions and deletions. This expanded set of capabilities compared to other technologies makes PEs a particularly promising platform for applications in biomedicine; however, the large size of PEs precludes their in vivo delivery by AAV, a promising and effective gene delivery vehicle that is currently under evaluation in multiple clinical trials. To overcome these obstacles, we have created a split-PE platform that is compatible with AAV delivery and have demonstrated the functionality of this approach in cultured cells. Despite this progress, there still remain several critical challenges, which we here propose to overcome in order to optimize this technology for effective and specific in vivo prime editing. To accomplish this objective, we have assembled a multidisciplinary team with collective expertise in genome editing (Dr. Perez-Pinera), AAV gene delivery (Dr. Gaj) and computational biology (Dr. Song). Our collaborative efforts will yield an integrated and comprehensive PE toolset that will blend strategies for target identification and editing optimization, with methods for reducing off-target effects and immune responses, thus priming this technology for future in vivo applications. Given that the flexibility of PEs has significantly expanded the number of actionable target sites that can be genetically modified, we anticipate that the integrated technologies we develop will have large, direct and long- lasting impact in biomedicine by enabling not only novel gene therapies, but also basic research. In particular, our technology will provide investigators with biological tools that are uniquely capable of introducing mutations within post-mitotic cells in vivo, which could be used to dissect functional elements or even determine the role of pathogenic mutations in a cell- and tissue-specific manner. The technologies created by this application will thus broadly impact biotechnology and biomedicine.
项目总结 基因组编辑正在给生物医学和生物技术带来革命性的变化,因为它能够精确地修改 活细胞中的基因组DNA。虽然在过去的十年里已经开发出了各种基因组编辑工具,但 CRISPR-CAS9系统已经成为一种特别通用和高效的DNA编辑技术。 尽管如此,其局限性源于对DNA双链断裂(DSB)的依赖,这可能导致 不可预测的编辑结果,甚至染色体易位,可能会限制它的应用。 基本编辑(BES)和基本编辑(PES)是两类新的基因组编辑工具,能够 在DNA中引入精确的单碱基转换,而不需要DSB。特别是,PES提供了 比BES更灵活,因为它们能够引入任何类型的基本转换,甚至是可编程的 小的插入和删除。与其他技术相比,这种扩展的功能集使pe成为 在生物医学中的应用特别有前景的平台;然而,PE的巨大尺寸阻碍了它们的应用 AAV是一种很有前途的有效的基因传递工具,目前正在进行多项评估 临床试验。 为了克服这些障碍,我们创建了一个与AAV交付和 已经在培养的细胞中展示了这种方法的功能。尽管取得了这些进展,但仍然存在 几个关键挑战,我们在这里建议克服这些挑战,以优化这项技术,使其有效 和特定的活体素材编辑。 为了实现这一目标,我们组建了一个拥有基因组专业知识的多学科团队。 编辑(Perez-Pinera博士)、AAV基因传递(Gaj博士)和计算生物学(Song博士)。我们的协作 努力将产生一个集成和全面的PE工具集,该工具集将混合目标识别和 编辑优化,减少偏离目标的影响和免疫反应的方法,从而启动 未来活体应用的技术。 鉴于PES的灵活性显著扩大了可操作的目标站点的数量,可以 转基因,我们预计我们开发的集成技术将具有大规模、直接和长期的- 不仅使新的基因疗法成为可能,也使基础研究成为可能,从而对生物医学产生持久的影响。特别是, 我们的技术将为研究人员提供独特的能够引入突变的生物工具 在体内的有丝分裂后细胞内,这可以被用来剖析功能元件,甚至确定 以细胞和组织特有的方式发生致病突变。因此,此应用程序创建的技术将 对生物技术和生物医学产生广泛影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pablo Perez-Pinera其他文献

Pablo Perez-Pinera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pablo Perez-Pinera', 18)}}的其他基金

Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
  • 批准号:
    10580008
  • 财政年份:
    2021
  • 资助金额:
    $ 53.59万
  • 项目类别:
Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
  • 批准号:
    10381534
  • 财政年份:
    2021
  • 资助金额:
    $ 53.59万
  • 项目类别:
Engineering platforms for editing RNA with single base resolution
单碱基分辨率 RNA 编辑工程平台
  • 批准号:
    9922944
  • 财政年份:
    2018
  • 资助金额:
    $ 53.59万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了