Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
基本信息
- 批准号:10381534
- 负责人:
- 金额:$ 53.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Amyotrophic Lateral SclerosisBasic ScienceBiologicalBiotechnologyCRISPR/Cas technologyCarrying CapacitiesCellsChromosomal translocationClinical ResearchClinical TrialsComputational BiologyCultured CellsDNADNA Double Strand BreakDNA SequenceDataDevelopmentElementsEngineeringEvaluationExperimental DesignsFutureGTP-Binding Protein alpha Subunits, GsGene DeliveryGenesGenomeGenomic DNAGenomic approachImmune responseKnowledgeLeadMachine LearningMediatingMethodologyMethodsMitoticModificationMutationNonsense MutationOpen Reading FramesOutcomePathogenicityPeptide Signal SequencesPoly APositioning AttributeRegulatory ElementResearchResearch PersonnelRoleSiteSite-Directed MutagenesisSpecificitySystemTechnologyTestingTherapeuticTimeTissuesTrans-SplicingVariantadeno-associated viral vectorbasebase editorbiophysical techniquescell typecomputational suitedelivery vehicledesignexperienceexperimental studyflexibilitygene therapygenome editinghuman diseaseimmunogenicimprovedin vivoinnovationinsertion/deletion mutationinteinminiaturizemultidisciplinarynovelnucleaseparticlepredictive modelingpreventprime editingprime editorprogramspromoterreconstitutionresponsesuccesstechnology developmenttechnology research and developmenttool
项目摘要
PROJECT SUMMARY
Genome editing is revolutionizing biomedicine and biotechnology by enabling the precise modification of
genomic DNA in living cells. While various genome-editing tools have been developed over the past decade, the
CRISPR-Cas9 system has emerged as a particularly versatile and efficient technology for editing DNA.
Nonetheless, limitations derived from its reliance on DNA double strand breaks (DSB), which can lead to
unpredictable editing outcomes and even chromosomal translocations, could limit its applications.
Base editors (BEs) and prime editors (PEs) are two novel classes of genome-editing tools capable of
introducing precise single-base conversion in DNA without the requirement of a DSB. PEs, in particular, provide
greater flexibility than BEs, owing to their ability to introduce any type of base conversion and even programable
small insertions and deletions. This expanded set of capabilities compared to other technologies makes PEs a
particularly promising platform for applications in biomedicine; however, the large size of PEs precludes their in
vivo delivery by AAV, a promising and effective gene delivery vehicle that is currently under evaluation in multiple
clinical trials.
To overcome these obstacles, we have created a split-PE platform that is compatible with AAV delivery and
have demonstrated the functionality of this approach in cultured cells. Despite this progress, there still remain
several critical challenges, which we here propose to overcome in order to optimize this technology for effective
and specific in vivo prime editing.
To accomplish this objective, we have assembled a multidisciplinary team with collective expertise in genome
editing (Dr. Perez-Pinera), AAV gene delivery (Dr. Gaj) and computational biology (Dr. Song). Our collaborative
efforts will yield an integrated and comprehensive PE toolset that will blend strategies for target identification and
editing optimization, with methods for reducing off-target effects and immune responses, thus priming this
technology for future in vivo applications.
Given that the flexibility of PEs has significantly expanded the number of actionable target sites that can be
genetically modified, we anticipate that the integrated technologies we develop will have large, direct and long-
lasting impact in biomedicine by enabling not only novel gene therapies, but also basic research. In particular,
our technology will provide investigators with biological tools that are uniquely capable of introducing mutations
within post-mitotic cells in vivo, which could be used to dissect functional elements or even determine the role of
pathogenic mutations in a cell- and tissue-specific manner. The technologies created by this application will thus
broadly impact biotechnology and biomedicine.
项目摘要
基因组编辑通过精确修改基因组,正在彻底改变生物医学和生物技术。
活细胞中的DNA虽然在过去十年中开发了各种基因组编辑工具,
CRISPR-Cas9系统已经成为一种特别通用和有效的DNA编辑技术。
尽管如此,其局限性源于其对DNA双链断裂(DSB)的依赖,这可能导致
不可预测的编辑结果,甚至染色体易位,可能会限制其应用。
碱基编辑器(BE)和主编辑器(PE)是两种新型的基因组编辑工具,能够
在DNA中引入精确的单碱基转换而不需要DSB。特别是PE,
比BE更大的灵活性,因为它们能够引入任何类型的基本转换,甚至可编程
小的插入和删除。与其他技术相比,这种扩展的功能集使PE成为
特别有前途的平台,在生物医学中的应用;然而,大规模的PE排除了他们的在
通过AAV的体内递送,一种有前途的和有效的基因递送载体,目前正在多个研究中进行评估。
临床试验
为了克服这些障碍,我们创建了一个与AAV递送兼容的拆分PE平台,
已经证明了这种方法在培养细胞中的功能。尽管取得了这些进展,但仍有
几个关键的挑战,我们在这里提出克服,以优化这项技术,
和特异性体内引物编辑。
为了实现这一目标,我们组建了一个多学科团队,
编辑(Perez-Pinera博士)、AAV基因递送(Gaj博士)和计算生物学(Song博士)。我们的协作
这些努力将产生一个综合全面的PE工具集,该工具集将融合目标识别战略,
编辑优化,具有用于减少脱靶效应和免疫应答的方法,从而引发这种
未来在体内应用的技术。
考虑到PE的灵活性显著增加了可操作的目标位点的数量,
转基因,我们预计,我们开发的综合技术将具有巨大的,直接的和长期的,
通过不仅使新的基因疗法,而且使基础研究成为可能,对生物医学产生持久的影响。特别是,
我们的技术将为研究人员提供独特的生物工具,
在体内有丝分裂后的细胞内,这可以用来解剖功能元件,甚至确定
以细胞和组织特异性方式的致病性突变。因此,该应用程序所创建的技术将
广泛影响生物技术和生物医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Perez-Pinera其他文献
Pablo Perez-Pinera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pablo Perez-Pinera', 18)}}的其他基金
Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
- 批准号:
10184207 - 财政年份:2021
- 资助金额:
$ 53.63万 - 项目类别:
Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
- 批准号:
10580008 - 财政年份:2021
- 资助金额:
$ 53.63万 - 项目类别:
Engineering platforms for editing RNA with single base resolution
单碱基分辨率 RNA 编辑工程平台
- 批准号:
9922944 - 财政年份:2018
- 资助金额:
$ 53.63万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别: