PREMIERE: A PREdictive Model Index and Exchange REpository

PREMIERE:预测模型索引和交换存储库

基本信息

  • 批准号:
    10228009
  • 负责人:
  • 金额:
    $ 68.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The confluence of new machine learning (ML) data-driven approaches; increased computational power; and access to the wealth of electronic health records (EHRs) and other emergent types of data (e.g., omics, imaging, mHealth) are accelerating the development of biomedical predictive models. Such models range from traditional statistical approaches (e.g., regression) through to more advanced deep learning techniques (e.g., convolutional neural networks, CNNs), and span different tasks (e.g., biomarker/pathway discovery, diagnostic, prognostic). Two issues have become evident: 1) as there are no comprehensive standards to support the dissemination of these models, scientific reproducibility is problematic, given challenges in interpretation and implementation; and 2) as new models are put forth, methods to assess differences in performance, as well as insights into external validity (i.e., transportability), are necessary. Tools moving beyond the sharing of data and model “executables” are needed, capturing the (meta)data necessary to fully reproduce a model and its evaluation. The objective of this R01 is the development of an informatics standard supporting the requisite information for scientific reproducibility for statistical and ML-based biomedical predictive models; from this foundation, we then develop new computational approaches to compare models' performance. We begin by extending the current Predictive Model Markup Language (PMML) standard to fully characterize biomedical datasets and harmonize variable definitions; to elucidate the algorithms involved in model creation (e.g., data preprocessing, parameter estimation); and to explain the validation methodology. Importantly, models in this PMML format will become findable, accessible, interoperable, and reusable (i.e., following FAIR principles). We then propose novel meth- ods to compare and contrast predictive models, assessing transportability across datasets. While metrics exist for comparing models (e.g., c-statistics, calibration), often the required case-level information is not available to calculate these measures. We thus introduce an approach to simulate cases based on a model's reported da- taset statistics, enabling such calculations. Different levels of transportability are then assigned to the metrics, determining the extent to which a selected model is applicable to a given population/cohort (i.e., helping answer the question, can I use this published model with my own data?). We tie these efforts together in our proposed framework, the PREdictive Model Index & Exchange REpository (PREMIERE). We will develop an online portal and repository for model sharing around PREMIERE, and our efforts will include fostering a community of users to guide its development through workshops, model-thons, and other activities. To demonstrate these efforts, we will bootstrap PREMIERE with predictive models from a targeted domain (risk assessment in imaging-based lung cancer screening). Our efforts to evaluate these developments will engage a range of stakeholders (model developers, users) to inform the completeness of our standard; and biostatisticians and clinical experts to guide assessment of model transportability.
新的机器学习(ML)数据驱动方法的融合;增加的计算能力;以及 访问丰富的电子健康记录(EHR)和其他紧急类型的数据(例如,组学,成像, mHealth)正在加速生物医学预测模型的发展。这些模型包括传统的 统计方法(例如,回归)到更高级的深度学习技术(例如,卷积 神经网络,CNN),并且跨越不同的任务(例如,生物标志物/途径发现、诊断、预后)。 有两个问题变得明显:1)由于没有全面的标准来支持传播 鉴于这些模型在解释和实施方面的挑战,科学再现性是有问题的; 2)随着新模型的提出,评估绩效差异的方法,以及对外部环境的洞察力, 有效性(即,运输能力)是必要的。超越数据共享和模型“可执行文件”的工具 捕获完全再现模型及其评估所需的(Meta)数据。 本R 01的目标是制定一个信息学标准,支持以下方面的必要信息: 统计和基于ML的生物医学预测模型的科学再现性;从这个基础上,我们然后 开发新的计算方法来比较模型的性能。我们开始通过延长电流 预测模型标记语言(PMML)标准,用于充分表征生物医学数据集, 变量定义;阐明模型创建中涉及的算法(例如,数据预处理,参数 估计);并解释验证方法。重要的是,这种PMML格式的模型将成为 可查找、可访问、可互操作和可重用(即,遵循公平原则)。我们提出一种新的冰毒- ODS比较和对比预测模型,评估数据集之间的可移植性。虽然存在度量标准, 为了比较模型(例如,c-统计,校准),通常无法获得所需的案例级信息, 计算这些措施。因此,我们介绍了一种方法来模拟的情况下,模型的报告数据的基础上, taset统计,使这种计算。然后将不同级别的可移植性分配给度量, 确定所选模型适用于给定群体/群组的程度(即,帮助解答 问题是,我可以将这个发布的模型与我自己的数据一起使用吗?)。我们将这些努力结合在一起, Predictive Model Index & Exchange REpository(PREMIERE)我们将开发一个在线门户网站 以及围绕PREMIERE共享模型的存储库,我们的努力将包括培养用户社区 通过讲习班、示范和其他活动指导其发展。为了证明这些努力, 我们将引导PREMIERE使用来自目标领域的预测模型(基于成像的风险评估 肺癌筛查)。我们评估这些发展的努力将吸引一系列利益相关者(模型 开发人员、用户)告知我们标准的完整性;生物统计学家和临床专家指导 模型可运输性评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALEX BUI其他文献

ALEX BUI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALEX BUI', 18)}}的其他基金

Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10801686
  • 财政年份:
    2023
  • 资助金额:
    $ 68.24万
  • 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10655487
  • 财政年份:
    2022
  • 资助金额:
    $ 68.24万
  • 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10473397
  • 财政年份:
    2022
  • 资助金额:
    $ 68.24万
  • 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
  • 批准号:
    10707881
  • 财政年份:
    2022
  • 资助金额:
    $ 68.24万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10615779
  • 财政年份:
    2022
  • 资助金额:
    $ 68.24万
  • 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
  • 批准号:
    10370048
  • 财政年份:
    2022
  • 资助金额:
    $ 68.24万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10406058
  • 财政年份:
    2022
  • 资助金额:
    $ 68.24万
  • 项目类别:
Network Core
网络核心
  • 批准号:
    10285908
  • 财政年份:
    2021
  • 资助金额:
    $ 68.24万
  • 项目类别:
Network Core
网络核心
  • 批准号:
    10657821
  • 财政年份:
    2021
  • 资助金额:
    $ 68.24万
  • 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
  • 批准号:
    10523518
  • 财政年份:
    2020
  • 资助金额:
    $ 68.24万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了