Computational and Statistical Framework to Model Tissue Shape and Mechanics
组织形状和力学建模的计算和统计框架
基本信息
- 批准号:10225587
- 负责人:
- 金额:$ 54.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionAlgorithmsAnatomyArchitectureBone DensityCardiologyCartilageCharacteristicsChargeClinicalCommunitiesComputational TechniqueComputer ModelsComputer softwareComputing MethodologiesDataData SetDeformityDevelopmentDiagnosisDiseaseElementsFinite Element AnalysisFoundationsFundingGeometryGleanGroomingHip JointHip region structureHomeostasisHuman PathologyHuman bodyImageIndividualInjuryIntuitionLibrariesMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMedical ImagingMethodologyMethodsModelingMonitorMorphologyNeurologyOntologyOrthopedicsPathologyPatient imagingPatientsPerformancePhysiciansProceduresProcessPublishingQuantitative EvaluationsResearchResourcesSchemeShapesStructureSystemTechniquesTechnologyTestingTissue ModelTissuesTrainingValidationX-Ray Computed Tomographyannotation systembaseclinical applicationclinical practiceconvolutional neural networkcostdata modelingdisease diagnosisimprovedin vivomachine learning algorithmnovelopen sourcepredictive modelingpreservationrelating to nervous systemrepairedshape analysissimulationthree-dimensional modelingtool
项目摘要
PROJECT SUMMARY
The morphologic and mechanical characteristics of a tissue are fundamental to understanding the
development, homeostasis, and pathology of the human body. During the previous period of funding, we
developed statistical shape modeling (SSM) methods and applied these to the study of structural hip disease.
We also developed the initial framework to integrate SSM with finite element (FE) analysis to enable the study
of shape and mechanics together. If incorporated into clinical practice, SSM and FE analysis could identify
features of the anatomy likely responsible for injury, remodeling, or repair. Geometry needed for SSM and FE
models is typically generated by segmentation of volumetric imaging data. This step can be painstakingly slow,
error prone, and cost prohibitive, which hampers clinical application of these computational techniques. We
have created a deep machine learning algorithm ‘DeepSSM’ that uses a convolutional neural network to
establish the correspondence model directly from unsegmented images. In Aim 1 we will apply DepSSM to
improve clinical understanding of structural hip disease by characterizing differences in anatomy between
symptomatic and asymptomatic individuals; these morphometric comparisons will identify anatomic features
most telling of disease, thereby guiding improvements in diagnosis. Computational advancements have
simplified the process to generate patient-specific FE models, enabling clinically focused research. However,
there is no framework to collectively visualize, compare, and interpret (i.e., post-process) results from multiple
FE models. Currently, inter-subject comparisons require oversimplifications such as averaging results over
subjectively defined regions. In Aim 2 we will develop new post-processing methods to collectively visualize,
interpret and statistically analyze FE results across multiple subjects and study groups. We will map FE results
to synthetic anatomies representing statistically meaningful distributions using the correspondence model.
Statistical parametric mapping will be applied to preserve anatomic detail through statistical testing. We will
use our published FE models of hip joint mechanics as the test system. Finally, volumetric images provide a
wealth of information that is delivered to physicians in a familiar format. Yet, tools are not available to interpret
model data with clinical findings from volumetric images. In Aim 3, we will develop methods that evaluate
relationships between shape, mechanics, and clinical findings gleaned from imaging through integrated
statistical tests and semi-automatic medical image annotation tools that utilize standard ontologies.
Quantitative CT and MRI images of the hip, which estimate bone density and cartilage ultrastructure,
respectively, will be evaluated as test datasets. To impart broad impact, we will disseminate our methods to
the community as open source software that will call core functionality provided by existing, open source
software that has a large user base (FEBio, ShapeWorks).
项目摘要
组织的形态学和机械特征是理解组织的基本特征的基础。
人体的发育、稳态和病理学。在上一次融资期间,我们
开发了统计形状建模(SSM)方法,并将其应用于结构性髋关节疾病的研究。
我们还开发了初始框架,将SSM与有限元(FE)分析相结合,以实现研究
形状和力学的结合。如果纳入临床实践,SSM和FE分析可以识别
可能导致损伤、重塑或修复的解剖结构特征。SSM和FE所需的几何结构
模型通常通过分割体积成像数据来生成。这一步可能会非常缓慢,
容易出错且成本过高,这阻碍了这些计算技术的临床应用。我们
创建了一个深度机器学习算法“DeepSSM”,该算法使用卷积神经网络来
直接从未分割的图像建立对应关系模型。在目标1中,我们将DepSSM应用于
通过描述解剖学差异提高对结构性髋关节疾病临床认识
有症状和无症状的个体;这些形态学比较将识别解剖特征
最能说明疾病,从而指导诊断的改进。计算技术的进步
简化了生成患者特定FE模型的过程,从而实现了临床重点研究。然而,在这方面,
没有框架来共同地可视化、比较和解释(即,后处理)结果
FE模型。目前,受试者之间的比较需要过度简化,例如平均结果
主观定义的区域。在目标2中,我们将开发新的后处理方法来集体可视化,
解释和统计分析多个受试者和研究组的FE结果。我们将绘制FE结果
涉及使用对应模型表示统计上有意义的分布的合成解剖结构。
将应用统计参数标测以通过统计测试保留解剖细节。我们将
使用我们发布的髋关节力学有限元模型作为测试系统。最后,体积图像提供了
以熟悉的格式提供给医生的丰富信息。然而,没有工具可以解释
模型数据与来自体积图像的临床发现。在目标3中,我们将开发评估
通过综合分析从成像中收集的形状、力学和临床结果之间的关系
统计测试和利用标准本体的半自动医学图像注释工具。
髋关节的定量CT和MRI图像,估计骨密度和软骨超微结构,
将分别作为测试数据集进行评价。为了产生广泛的影响,我们将把我们的方法传播给
社区作为开源软件,将调用现有开源软件提供的核心功能,
拥有庞大用户群的软件(FEBio、ShapeWorks)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Edward Anderson其他文献
Andrew Edward Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Edward Anderson', 18)}}的其他基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 54.03万 - 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
- 批准号:
10437851 - 财政年份:2020
- 资助金额:
$ 54.03万 - 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
- 批准号:
10207471 - 财政年份:2020
- 资助金额:
$ 54.03万 - 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
- 批准号:
10032655 - 财政年份:2020
- 资助金额:
$ 54.03万 - 项目类别:
Quantifying the Pathophysiology of Femoroacetabular Impingement Syndrome
量化股髋臼撞击综合征的病理生理学
- 批准号:
9985290 - 财政年份:2019
- 资助金额:
$ 54.03万 - 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
- 批准号:
8892826 - 财政年份:2013
- 资助金额:
$ 54.03万 - 项目类别:
Computational and Statistical Framework to Model Tissue Shape and Mechanics
组织形状和力学建模的计算和统计框架
- 批准号:
10612478 - 财政年份:2013
- 资助金额:
$ 54.03万 - 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
- 批准号:
9113003 - 财政年份:2013
- 资助金额:
$ 54.03万 - 项目类别:
Musculoskeletal and Finite Element Modeling of Femoroacetabular Impingement
股骨髋臼撞击的肌肉骨骼和有限元建模
- 批准号:
8629695 - 财政年份:2013
- 资助金额:
$ 54.03万 - 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
- 批准号:
8595484 - 财政年份:2013
- 资助金额:
$ 54.03万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 54.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 54.03万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 54.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.03万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 54.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.03万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 54.03万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 54.03万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 54.03万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 54.03万 - 项目类别:
Standard Grant














{{item.name}}会员




