Computational and Statistical Framework to Model Tissue Shape and Mechanics

组织形状和力学建模的计算和统计框架

基本信息

  • 批准号:
    10612478
  • 负责人:
  • 金额:
    $ 55.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The morphologic and mechanical characteristics of a tissue are fundamental to understanding the development, homeostasis, and pathology of the human body. During the previous period of funding, we developed statistical shape modeling (SSM) methods and applied these to the study of structural hip disease. We also developed the initial framework to integrate SSM with finite element (FE) analysis to enable the study of shape and mechanics together. If incorporated into clinical practice, SSM and FE analysis could identify features of the anatomy likely responsible for injury, remodeling, or repair. Geometry needed for SSM and FE models is typically generated by segmentation of volumetric imaging data. This step can be painstakingly slow, error prone, and cost prohibitive, which hampers clinical application of these computational techniques. We have created a deep machine learning algorithm ‘DeepSSM’ that uses a convolutional neural network to establish the correspondence model directly from unsegmented images. In Aim 1 we will apply DepSSM to improve clinical understanding of structural hip disease by characterizing differences in anatomy between symptomatic and asymptomatic individuals; these morphometric comparisons will identify anatomic features most telling of disease, thereby guiding improvements in diagnosis. Computational advancements have simplified the process to generate patient-specific FE models, enabling clinically focused research. However, there is no framework to collectively visualize, compare, and interpret (i.e., post-process) results from multiple FE models. Currently, inter-subject comparisons require oversimplifications such as averaging results over subjectively defined regions. In Aim 2 we will develop new post-processing methods to collectively visualize, interpret and statistically analyze FE results across multiple subjects and study groups. We will map FE results to synthetic anatomies representing statistically meaningful distributions using the correspondence model. Statistical parametric mapping will be applied to preserve anatomic detail through statistical testing. We will use our published FE models of hip joint mechanics as the test system. Finally, volumetric images provide a wealth of information that is delivered to physicians in a familiar format. Yet, tools are not available to interpret model data with clinical findings from volumetric images. In Aim 3, we will develop methods that evaluate relationships between shape, mechanics, and clinical findings gleaned from imaging through integrated statistical tests and semi-automatic medical image annotation tools that utilize standard ontologies. Quantitative CT and MRI images of the hip, which estimate bone density and cartilage ultrastructure, respectively, will be evaluated as test datasets. To impart broad impact, we will disseminate our methods to the community as open source software that will call core functionality provided by existing, open source software that has a large user base (FEBio, ShapeWorks).
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Edward Anderson其他文献

Andrew Edward Anderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Edward Anderson', 18)}}的其他基金

Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
  • 批准号:
    10725811
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
  • 批准号:
    10437851
  • 财政年份:
    2020
  • 资助金额:
    $ 55.13万
  • 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
  • 批准号:
    10207471
  • 财政年份:
    2020
  • 资助金额:
    $ 55.13万
  • 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
  • 批准号:
    10032655
  • 财政年份:
    2020
  • 资助金额:
    $ 55.13万
  • 项目类别:
Quantifying the Pathophysiology of Femoroacetabular Impingement Syndrome
量化股髋臼撞击综合征的病理生理学
  • 批准号:
    9985290
  • 财政年份:
    2019
  • 资助金额:
    $ 55.13万
  • 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
  • 批准号:
    8892826
  • 财政年份:
    2013
  • 资助金额:
    $ 55.13万
  • 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
  • 批准号:
    9113003
  • 财政年份:
    2013
  • 资助金额:
    $ 55.13万
  • 项目类别:
Musculoskeletal and Finite Element Modeling of Femoroacetabular Impingement
股骨髋臼撞击的肌肉骨骼和有限元建模
  • 批准号:
    8629695
  • 财政年份:
    2013
  • 资助金额:
    $ 55.13万
  • 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
  • 批准号:
    8595484
  • 财政年份:
    2013
  • 资助金额:
    $ 55.13万
  • 项目类别:
Computational and Statistical Framework to Model Tissue Shape and Mechanics
组织形状和力学建模的计算和统计框架
  • 批准号:
    10471785
  • 财政年份:
    2013
  • 资助金额:
    $ 55.13万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了