Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema

3D 姿势无标记跟踪揭示身体图式的感官起源

基本信息

项目摘要

The goal of this proposed research is to reveal the sensory origins underlying the body schema representation. Body schema is the brain's internal model of the body's spatial configuration. This internal representation is critical for sensorimotor processing, movement control, and self-awareness, and is continuously updated during movement. Body schema representations are disrupted when somatosensory input is lost. The first step toward discover the neural correlates of body schema is to uncover neural mechanisms that generate body posture representation. We hypothesize that sensory inputs from primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) to the posterior parietal cortex (PPC) are transformed to construct a body posture representation. To delineate the mechanisms underlying the neural coding of body posture, this project will utilize large- scale monitoring, apply interventional tools, develop new data analysis tools, and integrate new approaches. Our approach is to perform large-scale electrophysiological recording and novel markerless tracking of 3D posture in freely moving mice. To track posture, the first aim is to adapt a markerless tracking pipeline comprised of a deep 3D convolutional neural network to process high-speed videography of mouse behavior from multiple cameras. The second aim is to perform large-scale recording of neurons in S1, S2, and PPC and use advanced computational approaches to determine which postural features best explain the activity of neurons in these cortical areas. Finally, the third aim is to use optogenetic and projection-specific manipulations to address the causal impact of proprioceptive inputs from S1 and S2 on coding of posture in PPC. This research promises to uncover how sensory inputs are involved in generating the body schema representation and guiding behavior. Extensive training will be required to carry out this project and achieve my goal of earning a tenure-track professor position. The rigorous methodological and intellectual environment in Dr. Fan Wang’s lab and the Duke Neurobiology community will advance my conceptual knowledge and technical skills. I will implement deep learning techniques through training and collaboration with specialists. I will learn new techniques by attending Neuropixel and computational neuroscience courses. Finally, I will develop my professional skills by frequent attendance of seminars, workshops, and meeting with a postdoctoral mentorship committee. The proposed project will be conducted in the Department of Neurobiology at the Duke University Medical Campus. This interdisciplinary community at Duke will bolster the research and training included in this application through frequent interaction with talented and collaborative faculty, organization of seminars and symposia, numerous opportunities to practice research talks and receive valuable feedback, formation of a personalized postdoctoral mentorship committee, extensive career and professional training, and invaluable support from the postdoctoral association.
本研究的目的是揭示身体图式背后的感觉起源 表示.身体图式是大脑对身体空间结构的内部模型。这种内部 表征对于感觉运动处理、运动控制和自我意识至关重要, 在运动过程中不断更新。当躯体感觉输入时, 已经消失了发现身体图式的神经关联的第一步是揭示神经机制, 生成身体姿势表示。我们假设来自初级躯体感觉皮层的感觉输入 (S1)和次级躯体感觉皮层(S2)到后顶叶皮层(PPC)被转化为 构建身体姿势表示。 为了阐明身体姿势的神经编码机制,本项目将利用大型- 扩大监测规模,应用干预工具,开发新的数据分析工具,并整合新的方法。我们 一种方法是进行大规模的电生理记录和新的无标记跟踪的3D姿态 在自由移动的小鼠中。为了跟踪姿势,第一个目标是适配由以下各项组成的无标记跟踪流水线: 深度3D卷积神经网络处理多个鼠标行为的高速视频 相机第二个目标是在S1,S2和PPC中进行大规模的神经元记录,并使用先进的 计算方法来确定哪些姿势特征最能解释这些神经元的活动, 皮质区最后,第三个目的是使用光遗传学和投射特异性操作来解决基因表达的问题。 来自S1和S2的本体感受输入对PPC中姿势编码的因果影响。这项研究承诺, 揭示感官输入如何参与产生身体图式表征和指导行为。 广泛的培训将需要进行这一项目,并实现我的目标,赚取终身教职的轨道 教授职位。王凡博士的实验室和杜克大学严格的方法论和知识环境 神经生物学社区将提高我的概念知识和技术技能。我将深入实施 通过培训和与专家合作学习技术。我将通过参加 神经像素和计算神经科学课程。最后,我将通过频繁的工作来提高我的专业技能。 参加研讨会,讲习班,并与博士后导师委员会会议。 拟议的项目将在杜克大学医学院神经生物学系进行 校园杜克的这个跨学科社区将加强本课程中的研究和培训。 通过与有才华的和协作的教师,组织研讨会, 研讨会,无数的机会,实践研究会谈,并获得宝贵的反馈,形成一个 个性化的博士后导师委员会,广泛的职业和专业培训, 博士后协会的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Scott Severson其他文献

Kyle Scott Severson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Scott Severson', 18)}}的其他基金

Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema
3D 姿势无标记跟踪揭示身体图式的感官起源
  • 批准号:
    10216941
  • 财政年份:
    2020
  • 资助金额:
    $ 2.76万
  • 项目类别:
Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema
3D 姿势无标记跟踪揭示身体图式的感官起源
  • 批准号:
    10410450
  • 财政年份:
    2020
  • 资助金额:
    $ 2.76万
  • 项目类别:

相似国自然基金

基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
  • 批准号:
    52006188
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
  • 批准号:
    51804297
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
  • 批准号:
    11176015
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    联合基金项目
多流体ALE模式下Front tracking 界面追踪法研究
  • 批准号:
    10901022
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Single Cell Tracking of 3D Epigenetic Landscape Evolution During Embryonic Development
胚胎发育过程中 3D 表观遗传景观演化的单细胞追踪
  • 批准号:
    10344905
  • 财政年份:
    2022
  • 资助金额:
    $ 2.76万
  • 项目类别:
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 2.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Single Cell Tracking of 3D Epigenetic Landscape Evolution During Embryonic Development
胚胎发育过程中 3D 表观遗传景观演化的单细胞追踪
  • 批准号:
    10581484
  • 财政年份:
    2022
  • 资助金额:
    $ 2.76万
  • 项目类别:
A system for long-term high-resolution 3D tracking of movement kinematics in freely behaving animals
用于对自由行为动物的运动学进行长期高分辨率 3D 跟踪的系统
  • 批准号:
    10543738
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
  • 批准号:
    10231860
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
  • 批准号:
    10666687
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
Development of simultaneous ultra-fast 3D super resolution imaging and 3D single molecule tracking microscope system
同步超快速3D超分辨率成像和3D单分子跟踪显微镜系统的开发
  • 批准号:
    21K15058
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An easy-to-use software for 3D behavioral tracking from multi-view cameras
易于使用的软件,用于通过多视图摄像机进行 3D 行为跟踪
  • 批准号:
    10609129
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
Extending 3D markerless tracking for biomechanical analysis of human gait
扩展 3D 无标记跟踪以用于人类步态的生物力学分析
  • 批准号:
    543855-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
    Collaborative Research and Development Grants
A system for long-term high-resolution 3D tracking of movement kinematics in freely behaving animals
用于对自由行为动物的运动学进行长期高分辨率 3D 跟踪的系统
  • 批准号:
    10317118
  • 财政年份:
    2021
  • 资助金额:
    $ 2.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了