Comprehensive analysis of point mutations in cancer

癌症点突变综合分析

基本信息

  • 批准号:
    10301857
  • 负责人:
  • 金额:
    $ 41.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-20 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Precision medicine in cancer, a disease of the genome, relies on a deep and comprehensive understanding of the genetic mutations and abnormalities that accumulate in normal cells and drive transformation to cancer. The Getz and Rheinbay Labs have expertise in the discovery and characterization of point mutations through rigorous cancer genome analysis. In this proposal, we aim to create a Genome Data Analysis Center (GDAC) focused on employing our existing tools to robustly and comprehensively characterize point mutations (single-nucleotide variations and small indels) across the entire cancer genome to address scientific questions related to biological underpinnings of cancer that arise in each project we are assigned. We also have the flexibility to adapt our tools as deemed necessary by the unique needs of each project. Specifically, we plan to integrate and characterize mutations, mutational signatures, and other data types to comprehensively discover cancer drivers in coding and non-coding regions of the genome, including the often ignored more difficult-to-analyze regions of the genome. We will do this by incorporating methods to determine DNA methylation signatures as well as by interrogating the epigenome in both coding and non-coding regions of the genome. We further plan to advance our ability to determine trajectories of tumor evolution and heterogeneity by adapting our PhylogicNDT suite of tools to analyze the evolution, subclonal heterogeneity, and timing and order of mutational events from multiple samples (e.g., samples acquired longitudinally or spatially) from the same patient, or even from cell-free DNA (cfDNA) from non-invasive blood biopsy. In the interest of advancing the GDC’s goal of improving personalized medicine, we teamed with expert clinicians and translational scientists, Dr. Keith Flaherty and Dr. Kirsten Kübler, that will interpret our findings, associate them with clinical data and direct them towards clinical impact. They will also enhance our tools for identifying the tissue- and cell-of-origin of cancers to not only better understand the underlying mechanisms of transformation in a particular cancer type or subtype but also provide more effective therapeutic targets. Moreover, our final Aim is to perform patient-specific analysis to improve and enable precision medicine, especially in patients whose tumors do not have any identified actionable driver events. Here, we will employ machine learning techniques to build predictive models of therapeutic vulnerabilities. Overall, we offer primary competencies in DNA point mutation characterization, analysis of cfDNA, and determination of mutational signatures to the GDAN. We also bring added value with secondary competencies in methylation analysis (in the context of mutational signatures), mRNA analysis, single-cell RNA sequencing, and pathway/integrative data analysis. Bringing our extensive expertise to the various newly assembled Analysis Working Groups and collaborating with other GDACs within the GDAN can help to answer outstanding questions in cancer with the ultimate goal of improving diagnosis, prognosis, and treatment for every cancer patient.
项目摘要 癌症是一种基因组疾病,其精准医学依赖于对以下方面的深刻而全面的理解: 基因突变和异常在正常细胞中积累并驱动转化为癌症。的 Getz和Rheinbay实验室在通过严格的基因测序发现和表征点突变方面拥有专业知识。 癌症基因组分析在这项提案中,我们的目标是建立一个基因组数据分析中心(GDAC), 利用我们现有的工具来强大和全面地表征点突变(单核苷酸 变异和小插入缺失),以解决与生物学相关的科学问题。 我们被分配的每个项目中出现的癌症的基础。我们还可以灵活地调整工具 根据每个项目的独特需求确定。具体来说,我们计划整合和表征 突变,突变签名和其他数据类型,以全面发现编码和 基因组的非编码区,包括经常被忽视的更难以分析的基因组区域。 我们将通过整合方法来确定DNA甲基化特征以及通过询问 基因组编码区和非编码区的表观基因组。我们计划进一步提高我们的能力, 通过调整我们的PhylogicNDT工具套件来确定肿瘤演变和异质性的轨迹, 从多个样本中分析进化、亚克隆异质性以及突变事件的时间和顺序 (e.g.,纵向或空间采集的样品),或甚至来自无细胞DNA(cfDNA) 非侵入性血液活检为了推进GDC改善个性化医疗的目标, 我们与临床专家和翻译科学家基思弗莱厄蒂博士和克尔斯滕库布勒博士合作, 解释我们的研究结果,将其与临床数据联系起来,并将其用于临床影响。他们还将 增强我们识别癌症组织和细胞起源的工具,不仅可以更好地了解 在特定癌症类型或亚型中的潜在转化机制,而且还提供更有效的 治疗目标此外,我们的最终目标是进行患者特异性分析,以改善和实现 精准医疗,特别是在肿瘤没有任何可识别的可操作驱动事件的患者中。 在这里,我们将采用机器学习技术来构建治疗漏洞的预测模型。 总的来说,我们在DNA点突变表征、cfDNA分析和 确定GDAN的突变签名。我们还通过次要能力带来附加值 在甲基化分析(在突变特征的背景下),mRNA分析,单细胞RNA测序, 和途径/综合数据分析。将我们广泛的专业知识带到各种新组装的分析 工作组和与GDAN内其他GDAC的合作有助于回答悬而未决的问题 最终目标是改善诊断,预后和治疗每一个癌症患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GAD A GETZ其他文献

GAD A GETZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GAD A GETZ', 18)}}的其他基金

Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
  • 批准号:
    10440579
  • 财政年份:
    2022
  • 资助金额:
    $ 41.83万
  • 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
  • 批准号:
    10644013
  • 财政年份:
    2022
  • 资助金额:
    $ 41.83万
  • 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
  • 批准号:
    10491092
  • 财政年份:
    2021
  • 资助金额:
    $ 41.83万
  • 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
  • 批准号:
    10676830
  • 财政年份:
    2021
  • 资助金额:
    $ 41.83万
  • 项目类别:
Data Analysis Unit
数据分析单元
  • 批准号:
    10259733
  • 财政年份:
    2018
  • 资助金额:
    $ 41.83万
  • 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
  • 批准号:
    9571405
  • 财政年份:
    2016
  • 资助金额:
    $ 41.83万
  • 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
  • 批准号:
    9355157
  • 财政年份:
    2016
  • 资助金额:
    $ 41.83万
  • 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
  • 批准号:
    10011769
  • 财政年份:
    2016
  • 资助金额:
    $ 41.83万
  • 项目类别:
Discovery of clinically distinct CLL subgroups by integrative mapping of large-scale CLL genetic, expression and clinical data
通过大规模 CLL 遗传、表达和临床数据的综合绘图发现临床上不同的 CLL 亚组
  • 批准号:
    10005157
  • 财政年份:
    2016
  • 资助金额:
    $ 41.83万
  • 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
  • 批准号:
    9211085
  • 财政年份:
    2016
  • 资助金额:
    $ 41.83万
  • 项目类别:

相似海外基金

Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
  • 批准号:
    DP240100640
  • 财政年份:
    2024
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
  • 批准号:
    23K01889
  • 财政年份:
    2023
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10452217
  • 财政年份:
    2022
  • 资助金额:
    $ 41.83万
  • 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10670838
  • 财政年份:
    2022
  • 资助金额:
    $ 41.83万
  • 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
  • 批准号:
    DP200100492
  • 财政年份:
    2020
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
  • 批准号:
    407264
  • 财政年份:
    2019
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
  • 批准号:
    18K18240
  • 财政年份:
    2018
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
  • 批准号:
    17K12379
  • 财政年份:
    2017
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
  • 批准号:
    17K13937
  • 财政年份:
    2017
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
  • 批准号:
    8742767
  • 财政年份:
    2014
  • 资助金额:
    $ 41.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了