Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
基本信息
- 批准号:10676830
- 负责人:
- 金额:$ 39.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAftercareBiologicalBiopsyBloodCancer BiologyCancer PatientCancerousCellsClinicalClinical DataCodeCollaborationsCompetenceComplexComputational BiologyDNADNA MethylationDNA Sequence AlterationDataData AnalysesData SetDedicationsDiagnosisDiseaseEpigenetic ProcessEventEvolutionFutureGenesGeneticGenomeGenome Data Analysis CenterGenome Data Analysis NetworkGenomic Data CommonsGenomicsGoalsHeterogeneityIndividualInternationalJournalsKnowledgeMachine LearningMalignant Childhood NeoplasmMalignant NeoplasmsMessenger RNAMethodsMethylationMicrosatellite RepeatsMolecular AbnormalityMutationMutation AnalysisNormal CellNucleotidesOncogenesOutcomePaperPathway interactionsPatientsPatternPlayPoint MutationProcessProductionPrognosisPublishingQuality ControlRNARegulatory ElementRepetitive SequenceResearchResistanceRoleSample SizeSamplingTechniquesThe Cancer Genome AtlasTherapeuticTissuesUntranslated RNAVariantWorkcancer genomecancer genomicscancer subtypescancer typecell free DNAcohortdriver mutationepigenomeflexibilitygenome analysisgenome sequencingimprovedinnovationinsertion/deletion mutationinterestneoantigensnext generationnovelpersonalized medicineprecision medicinepredictive modelingpromoterrare cancerresistance mechanismsingle-cell RNA sequencingsubclonal heterogeneitytargeted treatmenttherapeutic targettherapeutically effectivetooltranslational oncologytranslational scientisttumorwhole genomeworking group
项目摘要
PROJECT SUMMARY
Precision medicine in cancer, a disease of the genome, relies on a deep and comprehensive understanding of
the genetic mutations and abnormalities that accumulate in normal cells and drive transformation to cancer. The
Getz and Rheinbay Labs have expertise in the discovery and characterization of point mutations through rigorous
cancer genome analysis. In this proposal, we aim to create a Genome Data Analysis Center (GDAC) focused
on employing our existing tools to robustly and comprehensively characterize point mutations (single-nucleotide
variations and small indels) across the entire cancer genome to address scientific questions related to biological
underpinnings of cancer that arise in each project we are assigned. We also have the flexibility to adapt our tools
as deemed necessary by the unique needs of each project. Specifically, we plan to integrate and characterize
mutations, mutational signatures, and other data types to comprehensively discover cancer drivers in coding and
non-coding regions of the genome, including the often ignored more difficult-to-analyze regions of the genome.
We will do this by incorporating methods to determine DNA methylation signatures as well as by interrogating
the epigenome in both coding and non-coding regions of the genome. We further plan to advance our ability to
determine trajectories of tumor evolution and heterogeneity by adapting our PhylogicNDT suite of tools to
analyze the evolution, subclonal heterogeneity, and timing and order of mutational events from multiple samples
(e.g., samples acquired longitudinally or spatially) from the same patient, or even from cell-free DNA (cfDNA)
from non-invasive blood biopsy. In the interest of advancing the GDC’s goal of improving personalized medicine,
we teamed with expert clinicians and translational scientists, Dr. Keith Flaherty and Dr. Kirsten Kübler, that will
interpret our findings, associate them with clinical data and direct them towards clinical impact. They will also
enhance our tools for identifying the tissue- and cell-of-origin of cancers to not only better understand the
underlying mechanisms of transformation in a particular cancer type or subtype but also provide more effective
therapeutic targets. Moreover, our final Aim is to perform patient-specific analysis to improve and enable
precision medicine, especially in patients whose tumors do not have any identified actionable driver events.
Here, we will employ machine learning techniques to build predictive models of therapeutic vulnerabilities.
Overall, we offer primary competencies in DNA point mutation characterization, analysis of cfDNA, and
determination of mutational signatures to the GDAN. We also bring added value with secondary competencies
in methylation analysis (in the context of mutational signatures), mRNA analysis, single-cell RNA sequencing,
and pathway/integrative data analysis. Bringing our extensive expertise to the various newly assembled Analysis
Working Groups and collaborating with other GDACs within the GDAN can help to answer outstanding questions
in cancer with the ultimate goal of improving diagnosis, prognosis, and treatment for every cancer patient.
项目总结
癌症是一种基因组疾病,精准医学依赖于对
在正常细胞中积累并促使转化为癌症的基因突变和异常。这个
Getz和Rheinbay实验室在发现和表征点突变方面拥有专业知识,通过严格的
癌症基因组分析。在这项提案中,我们的目标是创建一个专注于基因组数据分析中心(GDAC)的
关于使用我们现有的工具来稳健和全面地表征点突变(单核苷酸
变异和小Indels),以解决与生物学相关的科学问题
在我们被分配的每个项目中出现的癌症的基础。我们还可以灵活调整我们的工具
视每个项目的独特需要而定。具体地说,我们计划整合和表征
突变、突变签名和其他数据类型,以全面发现编码和
基因组的非编码区,包括基因组中经常被忽视的更难分析的区域。
我们将通过结合确定DNA甲基化签名的方法以及通过询问
基因组编码区和非编码区的表观基因组。我们进一步计划提升我们的能力
通过调整我们的PhylogicNDT工具套件来确定肿瘤进化和异质性的轨迹
分析来自多个样本的突变事件的进化、亚克隆异质性以及时间和顺序
(例如,纵向或空间获取的样本)来自同一患者,甚至来自无细胞DNA(CfDNA)
来自非侵入性血液活组织检查。为了推进全球发展中心改善个性化医疗的目标,
我们与专业临床医生和翻译科学家基思·弗莱厄蒂博士和柯尔斯滕·库布勒博士合作,将
解读我们的发现,将它们与临床数据联系起来,并将它们引向临床影响。他们还将
加强我们识别癌症组织和细胞起源的工具,以不仅更好地了解
特定癌症类型或亚型的潜在转化机制也提供了更有效的
治疗靶点。此外,我们的最终目标是执行特定于患者的分析,以改善和实现
精准医学,特别是在其肿瘤没有任何已确定的可操作驱动事件的患者中。
在这里,我们将使用机器学习技术来建立治疗脆弱性的预测模型。
总体而言,我们在dna点突变特征、cfDNA分析和
GDAN突变特征的测定。我们还通过次要能力带来附加值
在甲基化分析(在突变特征的背景下)、信使核糖核酸分析、单细胞RNA测序、
和路径/综合数据分析。将我们广泛的专业知识带到各种新组装的分析中
工作组和与GDAN内其他GDAC的合作可以帮助回答悬而未决的问题
最终目标是改善每一位癌症患者的诊断、预后和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAD A GETZ其他文献
GAD A GETZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAD A GETZ', 18)}}的其他基金
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10440579 - 财政年份:2022
- 资助金额:
$ 39.22万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10644013 - 财政年份:2022
- 资助金额:
$ 39.22万 - 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
- 批准号:
10301857 - 财政年份:2021
- 资助金额:
$ 39.22万 - 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
- 批准号:
10491092 - 财政年份:2021
- 资助金额:
$ 39.22万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
9571405 - 财政年份:2016
- 资助金额:
$ 39.22万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
9355157 - 财政年份:2016
- 资助金额:
$ 39.22万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
10011769 - 财政年份:2016
- 资助金额:
$ 39.22万 - 项目类别:
Discovery of clinically distinct CLL subgroups by integrative mapping of large-scale CLL genetic, expression and clinical data
通过大规模 CLL 遗传、表达和临床数据的综合绘图发现临床上不同的 CLL 亚组
- 批准号:
10005157 - 财政年份:2016
- 资助金额:
$ 39.22万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
9211085 - 财政年份:2016
- 资助金额:
$ 39.22万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 39.22万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 39.22万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 39.22万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 39.22万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 39.22万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 39.22万 - 项目类别: