Data Analysis Unit
数据分析单元
基本信息
- 批准号:10259733
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAlgorithmsArchitectureAtlasesAwarenessBiologicalBreastCell CommunicationCell NucleusCellsCellular StructuresClinicalCollaborationsColonCommunitiesComplexComputer AnalysisComputer ModelsComputing MethodologiesDataData AnalysesData ScienceDevelopmentDisseminated Malignant NeoplasmDrug resistanceEcosystemEnsureExperimental DesignsGeneticGeographyGoalsHistologicHumanImmuneImmunotherapyInfrastructureKnowledgeLearningMalignant - descriptorMalignant NeoplasmsMetadataMethodologyMethodsModalityModelingMolecularMolecular StructureMorphologyNeighborhoodsNon-MalignantPatientsPharmaceutical PreparationsPropertyRecurrenceReproducibilityResearch PersonnelResistanceResolutionSamplingSoftware ToolsSpecimenStatistical ModelsStromal CellsStructureSystemTechniquesTestingTherapeuticTissuesTumor SubtypeValidationVisualizationVisualization softwareWorkcell typeclinical applicationclinically relevantcomputerized data processingdeep learningdesigninnovationmelanomaneoplastic cellnext generationnovelopen sourcepatient responsepatient stratificationpersonalized diagnosticspower analysisprecision medicinepredictive modelingprogramsprospectivequery toolsresponsescaffoldsoundstatistical learningtargeted treatmenttherapy resistanttranscriptome sequencingtumor
项目摘要
Abstract
Tumor drug response and resistance is driven by the tumor ecosystem, which includes an intricate combination
of tumor cell properties and complex interactions among those cells organized in histological structures with
surrounding immune and stromal cells. However, we lack a systematic framework of this ecosystem across
tumor subtypes and patients upon which we can predict, study, and understand drug response in order to enable
more precise diagnostics and better therapeutics. Tumor atlases at high spatial, cellular and genetic resolution
provide an extraordinary opportunity to make these discoveries but require overcoming key methodological
challenges. The Data Analysis Unit (DAU) will take advantage of this opportunity in the context of three metastatic
cancers (melanoma, colon, and breast) and their resistance to immunotherapy or targeted therapy. The DAU
will develop the next generation of computational methods to reconstruct these atlases from complex, massive,
diverse and multidimensional spatial and cellular data, and ensure their immediate impact by formulating specific
predictive models about drug effects and patient response. To do this, we will design adaptive power analyses
for experimental design methods to drive the choice of samples, data modalities, and experimental parameters
in a systematic way. We will develop approaches to quantify features from each data modality and across
modalities. We will create an infrastructure to identify the scaffold of shared cellular, histological and clinical
features across samples to build a tumor atlas, and illustrate the value of these atlases in discovering the
mechanisms of drug resistance. Finally, we will design methods for querying, visualizing, and sharing atlas
knowledge at scale to enable immediate access, partner with others in the Human Tumor Atlas Network (HTAN)
and impact researchers and clinicians. Overall, the DAU will create the methodological framework to create the
tumor atlases herein and for others developed in HTAN and the broader community.
摘要
肿瘤药物反应和耐药性是由肿瘤生态系统驱动的,其中包括一个复杂的组合
肿瘤细胞的特性和组织结构中的细胞之间的复杂相互作用,
周围的免疫细胞和基质细胞。然而,我们缺乏一个系统的框架,
肿瘤亚型和患者,我们可以预测,研究和了解药物反应,
更精确的诊断和更好的治疗。高空间、细胞和遗传分辨率的肿瘤图谱
提供了一个非凡的机会,使这些发现,但需要克服关键的方法论
挑战数据分析部门(DAU)将在三个转移性肿瘤的背景下利用这一机会。
癌症(黑色素瘤、结肠癌和乳腺癌)及其对免疫疗法或靶向疗法的抗性。的DAU
将开发下一代的计算方法,从复杂的,巨大的,
多样化和多维的空间和细胞数据,并通过制定具体的
关于药物效果和患者反应的预测模型。为此,我们将设计自适应功耗分析
用于实验设计方法,以驱动样本、数据模态和实验参数的选择
以系统的方式。我们将开发方法来量化每个数据模态的特征,
方式。我们将建立一个基础设施,以确定共享的细胞,组织学和临床的支架,
特征,以建立肿瘤图谱,并说明这些图谱在发现肿瘤中的价值。
耐药机制。最后,我们将设计用于查询、可视化和共享地图集的方法
大规模的知识,以实现即时访问,与人类肿瘤图谱网络(HTAN)中的其他人合作
并影响研究人员和临床医生。总体而言,DAU将创建方法框架,
本文中的肿瘤图谱以及在HTAN和更广泛的社区中开发的其他肿瘤图谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAD A GETZ其他文献
GAD A GETZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAD A GETZ', 18)}}的其他基金
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10440579 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10644013 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
- 批准号:
10301857 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
- 批准号:
10491092 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别:
Comprehensive analysis of point mutations in cancer
癌症点突变综合分析
- 批准号:
10676830 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
9571405 - 财政年份:2016
- 资助金额:
$ 49.88万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
9355157 - 财政年份:2016
- 资助金额:
$ 49.88万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
10011769 - 财政年份:2016
- 资助金额:
$ 49.88万 - 项目类别:
Discovery of clinically distinct CLL subgroups by integrative mapping of large-scale CLL genetic, expression and clinical data
通过大规模 CLL 遗传、表达和临床数据的综合绘图发现临床上不同的 CLL 亚组
- 批准号:
10005157 - 财政年份:2016
- 资助金额:
$ 49.88万 - 项目类别:
Global Infrastructure for Collaborative High-throughput Cancer Genomics Analysis
协作高通量癌症基因组分析的全球基础设施
- 批准号:
9211085 - 财政年份:2016
- 资助金额:
$ 49.88万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Studentship