Scaling extreme analYtics with Cross-architecture acceleration based on OPen Standards

通过基于开放标准的跨架构加速扩展极限分析

基本信息

  • 批准号:
    10048920
  • 负责人:
  • 金额:
    $ 99.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    EU-Funded
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The wide-spread adoption of AI and analytics has resulted in a rapidly expanding market for novel hardware accelerators that can provide energy-efficient scaling of training and inference tasks at both the cloud and edge. Unfortunately, all popular solutions AI acceleration solutions today use proprietary, closed hardware—software stacks, leading to a monopolization of the AI acceleration market by a few large industry players. The vision of SYCLOPS project is to enable better solutions for AI/data mining for extremely large and diverse data by democratizing AI acceleration using open standards, and enabling a healthy, competitive, innovation-driven ecosystem for Europe and beyond. This vision relies on the convergence of two important trends in the industry: (i) the standardization and adoption of RISCV, a free, open Instruction Set Architecture (ISA), for AI and analytics acceleration, and (ii) the emergence and growth of SYCL as a cross-vendor, cross-architecture, data parallel programming model for all types of accelerators, including RISC-V. The goal of project SYCLOPS is to bring together these standards for the first time in order to (i) demonstrate ground-breaking advances in performance and scalability of extreme data analytics using a standards-based, fully-open, AI acceleration approach and (ii) enable the development of inter-operable (open and vendor neutral interfaces/APIs), trustworthy (verifiable and standards-based hardware/software), and green (via application-specific processor customization) AI systems. In doing so, we will use the experience gained in SYCLOPS to contribute back to SYCL and RISC-V standards and foster links to respective academic, industrial and innovator communities (RISC-V foundation, EPI, Khronos, ISO C++). Bringing together the two standards enables codesign in both standards, which in turn, will enable a broader AI accelerator design space, and a richer ecosystem of solutions.
人工智能和分析的广泛采用导致新型硬件加速器市场迅速扩大,这些加速器可以在云和边缘提供高效节能的训练和推理任务扩展。不幸的是,今天所有流行的解决方案AI加速解决方案都使用专有的封闭硬件-软件堆栈,导致AI加速市场被少数大型行业参与者垄断。SYCLOPS项目的愿景是通过使用开放标准实现人工智能加速的民主化,为欧洲及其他地区提供更好的人工智能/数据挖掘解决方案,并为欧洲及其他地区提供健康,有竞争力,创新驱动的生态系统。这一愿景依赖于行业两个重要趋势的融合:(i)RISCV的标准化和采用,一种免费的开放式指令集架构(伊萨),用于人工智能和分析加速,以及(ii)SYCL作为所有类型加速器的跨供应商,跨架构,数据并行编程模型的出现和发展,SYCLOPS项目的目标是首次将这些标准结合在一起,以便(i)使用基于标准的,完全开放的,人工智能加速方法和(ii)实现可互操作(开放和供应商中立的接口/API),可信赖(可验证和基于标准的硬件/软件)和绿色(通过特定于应用的处理器定制)人工智能系统的开发。在此过程中,我们将利用在SYCLOPS中获得的经验为SYCL和RISC-V标准做出贡献,并促进与各自学术,工业和创新社区(RISC-V基金会,EPI,Khronos,ISO C++)的联系。将这两个标准结合在一起,可以在两个标准中进行协同设计,这反过来将使AI加速器的设计空间更广阔,并形成更丰富的解决方案生态系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Studentship

相似海外基金

OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2333899
  • 财政年份:
    2023
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
Extreme Food Risk Analytics
极端食品风险分析
  • 批准号:
    10064096
  • 财政年份:
    2023
  • 资助金额:
    $ 99.52万
  • 项目类别:
    EU-Funded
Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics
协作研究:PPoSS:规划:超大规模稀疏数据分析
  • 批准号:
    2119236
  • 财政年份:
    2021
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics
协作研究:PPoSS:规划:超大规模稀疏数据分析
  • 批准号:
    2119154
  • 财政年份:
    2021
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics
协作研究:PPoSS:规划:超大规模稀疏数据分析
  • 批准号:
    2119047
  • 财政年份:
    2021
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics
协作研究:PPoSS:规划:超大规模稀疏数据分析
  • 批准号:
    2118385
  • 财政年份:
    2021
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2007775
  • 财政年份:
    2020
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
  • 批准号:
    2028942
  • 财政年份:
    2020
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2034850
  • 财政年份:
    2020
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
  • 批准号:
    2028944
  • 财政年份:
    2020
  • 资助金额:
    $ 99.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了