FreeSurfer Development, Maintenance, and Hardening

FreeSurfer 开发、维护和强化

基本信息

  • 批准号:
    10326397
  • 负责人:
  • 金额:
    $ 57.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Abstract: Imaging of the human brain has seen explosive growth in the last two decades mainly through the various modalities of MRI. The massive amount of data requires automatic and robust tools for analysis. FreeSurfer (FS, surfer.nmr.mgh.harvard.edu) is one of the preeminent tools used for neuroimage analysis. FS has more than 44,000 downloads, and the core FS manuscripts have been cited more than 22,000 times. FS is part of the analysis core for many NIH-funded large-scale data acquisition projects such as the Human Connectome Project (HCP), Alzheimer's Disease Neuroimaging Initiative (ADNI), Framingham Heart Study (FHS), The Adolescent Brain Cognitive Development (ABCD), as well as the UK BioBank. One third of the 600+ ADNI-based publications cite FS. Simply put, much of the innovative research done in neuroimaging would not be possible without FS. Started in 1998, FS is best known for providing detailed and automated anatomical analysis of T1-weighted MRI images, especially for the cortical surface. However, FS anatomical analysis provides an ideal substrate for all modes of brain imaging including functional MRI, diffusion MRI, PET, optical/NIRS, as well as EEG/MEG. FS provides tools to perform these analyses as well as software to integrate with other analysis tools (e.g., SPM, FSL, AFNI). FS has been used for presurgical planning and even in the operating room. The original grant mostly centered around Sequence Adaptive Multimodal Segmentation (SAMSEG). SAMSEG uses parametric Bayesian generative modeling to segment brain images. The SAMSEG framework fits atlas priors and multivariate Gaussian intensity models to brain images (including MRI artifacts such as bias fields). SAMSEG can take any modality or combination of modalities as input. Since it adapts its intensity model, it is robust to differences in scanner. Since it is a generative model, it is easy to extend to encompass more segmentation details. For example, the SAMSEG framework has been used to segment hippocampal subfield, amygdalar nuclei, thalamic nuclei, and extracerebral structures. The main vision for the renewal is to extend the SAMSEG framework to accommodate longitudinal models, incorporate more anatomical details, and to use SAMSEG output as a basis for cortical surface placement that is, like SAMSEG, modality independent and capable of using any combination of modalities. In addition, we propose a series of new tools that will assist in the individual and group analysis of large studies by creating study-specific models. In addition to this new technical development, we are requesting support for software engineering, maintenance, and user support – mundane and not innovative, but high-impact this type of support is critical to the thousands of researchers who rely on FreeSurfer.
摘要: 在过去的二十年里,人类大脑的成像技术主要通过各种方法得到了爆炸性的发展。 MRI的模式。大量的数据需要自动和强大的分析工具。FreeSurfer (FS,surfer.nmr.mgh.harvard.edu)是用于神经图像分析的卓越工具之一。FS更多 下载量超过44,000次,核心文件系统手稿被引用超过22,000次。财政司司长是 许多NIH资助的大型数据采集项目的分析核心,如人类连接组项目 (HCP),阿尔茨海默病神经影像学倡议(ADNI),心脏病研究(FHS),青少年 大脑认知发展(ABCD),以及英国生物银行。600多篇基于ADNI的出版物中的三分之一 引用FS。简而言之,如果没有FS,神经成像领域的许多创新研究都是不可能的。 从1998年开始,FS以提供T1加权MRI的详细和自动解剖分析而闻名 图像,尤其是皮质表面。然而,FS解剖分析为所有 脑成像模式包括功能性MRI、扩散MRI、PET、光学/NIRS以及EEG/MEG。FS 提供执行这些分析的工具以及与其他分析工具集成的软件(例如,SPM, FSL、AFNI)。FS已被用于术前计划,甚至在手术室。 最初的资助主要集中在序列自适应多模式分割(SAMSEG)。 SAMSEG使用参数贝叶斯生成建模来分割大脑图像。SAMSEG框架 将图谱先验和多变量高斯强度模型拟合到脑图像(包括MRI伪影,例如偏差 fields)。SAMSEG可以采用任何模态或模态组合作为输入。因为它调整了它的强度模型, 它对于扫描仪中差异是鲁棒的。由于它是一个生成模型,因此很容易扩展以包含更多 细分细节。例如,SAMSEG框架已经用于分割海马子区, 杏仁核、丘脑核和脑外结构。 更新的主要愿景是扩展SAMSEG框架,以适应纵向 模型,纳入更多的解剖细节,并使用SAMSEG输出作为皮质表面的基础 与SAMSEG一样,放置方式独立,能够使用任何方式组合。在 此外,我们还提出了一系列新的工具,这些工具将有助于对大型研究进行个体和群体分析, 创建研究专用模型。除了这一新的技术发展,我们还要求支持 软件工程,维护和用户支持-平凡而不创新,但这种类型的影响力很大 对于成千上万依赖FreeSurfer的研究人员来说,支持至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Fischl其他文献

Bruce Fischl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Fischl', 18)}}的其他基金

An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 57.56万
  • 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
  • 批准号:
    10664289
  • 财政年份:
    2023
  • 资助金额:
    $ 57.56万
  • 项目类别:
Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
  • 批准号:
    10658045
  • 财政年份:
    2023
  • 资助金额:
    $ 57.56万
  • 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
  • 批准号:
    10373401
  • 财政年份:
    2021
  • 资助金额:
    $ 57.56万
  • 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
  • 批准号:
    10525252
  • 财政年份:
    2021
  • 资助金额:
    $ 57.56万
  • 项目类别:
Deep Learning Algorithms for FreeSurfer
FreeSurfer 的深度学习算法
  • 批准号:
    10383677
  • 财政年份:
    2020
  • 资助金额:
    $ 57.56万
  • 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
  • 批准号:
    10224850
  • 财政年份:
    2020
  • 资助金额:
    $ 57.56万
  • 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
  • 批准号:
    10038179
  • 财政年份:
    2020
  • 资助金额:
    $ 57.56万
  • 项目类别:
Deep Learning Algorithms for FreeSurfer
FreeSurfer 的深度学习算法
  • 批准号:
    10613469
  • 财政年份:
    2020
  • 资助金额:
    $ 57.56万
  • 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
  • 批准号:
    10295766
  • 财政年份:
    2018
  • 资助金额:
    $ 57.56万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了