Preclinical optimization and design for manufacturability of immunoregulatory tissue-engineered vascular grafts
免疫调节组织工程血管移植物可制造性的临床前优化和设计
基本信息
- 批准号:10054024
- 负责人:
- 金额:$ 36.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnimal ModelAnimal TestingAnimalsArteriesAutologousBenchmarkingBloodBlood VesselsBusinessesBypassCaliberCell modelCellsChestClinicClinicalCoronary heart diseaseDevelopmentDevice or Instrument DevelopmentDevicesEstersExtracellular MatrixFibroinsFreeze DryingFundingGeometryGoldGrantHarvestHourHumanImplantIn VitroIndustry StandardLegMesenchymalMicrospheresModelingOutcomePatientsPerformancePhasePhenotypePhysiologicalPilot ProjectsPlayProcessProductionPublishingRattusResistanceRoleSheepSilkStromal CellsSurgical suturesTechnologyTestingTimeTubular formationUnited States National Institutes of HealthUreaUrethaneVascular GraftVeinsWorkbasebiomaterial compatibilityclinical translationclinically relevantcommercializationcytokinedensitydesignextracellular vesiclesimmunoregulationimplantationin vivoin vivo evaluationmacrophagemanufacturabilityneutrophilnovelpre-clinicalprimary outcomeproduct developmentprototyperecruitregenerativeresearch clinical testingscaffoldscale upstandard measurestemsuccessunpublished worksvascular tissue engineering
项目摘要
SUMMARY
Despite the emergence of a few companies in recent years based on the clinical translation of small diameter
tissue-engineered vascular grafts (TEVGs), the gold standard for arterial bypass in the clinic continues to be
autologous vein or artery grafts. Our group has developed, with previous NIH funding, TEVGs based on the
documented pro-regenerative immunoregulatory potency of mesenchymal stem/stromal cells (MSCs) and
tubular, biodegradable scaffolds. MSCs are immunoregulatory in that they both recruit host neutrophils and
macrophages via secreted factors and modulate the recruited cells to a tolerant and pro-regenerative phenotype.
We have also demonstrated that MSCs can stimulate the production of new functional vascular extracellular
matrix both in-vitro and in-vivo and that MSCs play an acute antithrombogenic role in our TEVGs.
Our published work has rigorously tested the ability of human-derived MSCs to induce remodeling of TEVG
constructs when implanted as rat aortic interposition grafts. In very recent unpublished work (embargoed pending
IP protection), we have also successfully tested in the same rat model cell-free TEVG strategies based on
immunoregulatory factors secreted by MSCs. These have included the use of cytokine- and MSC secreted
factor-loaded microspheres and MSC-derived extracellular vesicles (EVs) loaded into TEVG scaffolds.
We define our TEVG strategies in terms of feasible combinations of “payload” (MSCs, cytokine-loaded
microspheres, MSC secreted factor-loaded microspheres, and MSC-derived EVs) loaded into three different
types of scaffolds (poly(ester urethane)urea (PEUU), lyophilized silk fibroin (LyoGel), and bilayered porous silk).
We have also begun to scale-up the fabrication processes of these TEVG configurations in anticipation of
eventual large animal testing and have demonstrated success with a sheep implant pilot study in anticipation of
this proposal submission.
Our proposed milestone-driven project is ideal for this two-phase Catalyze grant mechanism and successful
completion will lead to significant progress toward the clinical translation of our TEVG technology. The R61
phase has two objectives with milestones that will allow us to fully evaluate, in our well-established and relatively
high-throughput rat model, all feasible TEVG configurations. The primary outcome of the R61 Phase will be to
identify the best combination(s) of immunoregulatory payload and scaffold for a TEVG construct that can most
optimally remodel in-vivo into a native-like artery. The R33 phase has five objectives with milestones that will
first demonstrate successful fabrication of scaled-up versions of the TEVG configurations that meet the
milestones of the R61 phase, and then perform large animal testing of the best (up to four) configuration(s). The
outcome of this phase will be to identify the optimal TEVG configuration to move forward toward clinical testing
and commercialization, and also to address design for manufacturability and development of regulatory and
business plans and connections.
摘要
尽管近年来出现了几家基于临床的小直径平移术
组织工程血管移植物(TEVGs),临床动脉搭桥术的黄金标准仍然是
自体静脉或动脉移植。我们的团队在NIH之前的资助下,开发了基于
已证实的间充质干细胞/基质细胞(MSCs)促进再生的免疫调节能力
管状、可生物降解的支架。MSCs具有免疫调节作用,因为它们既招募宿主中性粒细胞,又
巨噬细胞通过分泌因子调节招募的细胞,使其具有耐受性和促再生表型。
我们还证明了间充质干细胞可以刺激产生新的功能性血管细胞外。
体外和体内的基质和MSCs在我们的TEVGs中起着急性抗血栓形成作用。
我们发表的工作严格测试了人类来源的MSCs诱导TEVG重塑的能力
当作为大鼠主动脉间置移植物植入时,构建。在最近未发表的作品中(禁运待定
IP保护),我们还成功地在相同的大鼠模型上测试了基于无细胞TEVG策略
MSCs分泌的免疫调节因子。其中包括使用细胞因子和MSC分泌的
加载因子的微球和MSC衍生的细胞外小泡(EV)被加载到TEVG支架中。
我们根据有效载荷(MSCs,细胞因子负载)的可行组合来定义我们的TEVG策略
微球、MSC分泌因子负载的微球和MSC衍生的EV)负载到三个不同的
支架的类型(聚氨基甲酸酯尿素(PEUU)、冻干丝素蛋白(LyoGel)和双层多孔丝)。
我们还开始扩大这些TEVG配置的制造工艺,以期
最终进行了大型动物试验,并在预期的绵羊植入试验中取得了成功
这份提案意见书。
我们建议的里程碑驱动项目是这种两阶段催化赠款机制的理想选择,并成功
完成后,我们的TEVG技术将在临床翻译方面取得重大进展。R61
阶段有两个目标和里程碑,这将使我们能够充分评估,在我们完善和相对
高通量RAT模型,所有可行的TEVG配置。R61阶段的主要成果将是
确定免疫调节有效载荷和支架的最佳组合(S),以构建能够最大限度地
在活体内最佳地重建成一条类似于天然的动脉。R33阶段有五个目标和里程碑,这些目标将
首先演示成功制造符合以下条件的TEVG配置的放大版本
里程碑的R61阶段,然后执行大型动物测试的最佳(最多四个)配置(S)。这个
这一阶段的结果将是确定最优的TEVG配置,以推进临床测试
和商业化,并解决可制造性设计和监管和开发
商业计划和人脉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Alan Vorp其他文献
Finite element modelling and analyses of nonlinearly elastic, orthotropic, vascular tissue in distension
- DOI:
10.1007/bf02368653 - 发表时间:
1993-11-01 - 期刊:
- 影响因子:5.400
- 作者:
David Alan Vorp - 通讯作者:
David Alan Vorp
David Alan Vorp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Alan Vorp', 18)}}的其他基金
Biomechanics in Regenerative Medicine (BiRM) Training Program
再生医学生物力学 (BiRM) 培训计划
- 批准号:
10628407 - 财政年份:2023
- 资助金额:
$ 36.72万 - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10331850 - 财政年份:2021
- 资助金额:
$ 36.72万 - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10115365 - 财政年份:2021
- 资助金额:
$ 36.72万 - 项目类别:
The Role of Fibrinolysis in Tissue Engineered Vascular Grafts for Aged Individuals
纤溶在老年人组织工程血管移植中的作用
- 批准号:
9979086 - 财政年份:2020
- 资助金额:
$ 36.72万 - 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
- 批准号:
9175164 - 财政年份:2016
- 资助金额:
$ 36.72万 - 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
- 批准号:
9276786 - 财政年份:2016
- 资助金额:
$ 36.72万 - 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
- 批准号:
9015874 - 财政年份:2016
- 资助金额:
$ 36.72万 - 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
- 批准号:
9260065 - 财政年份:2016
- 资助金额:
$ 36.72万 - 项目类别:
Autologous Stem Cell-Based Tissue Engineered Vascular Grafts
基于自体干细胞的组织工程血管移植物
- 批准号:
8426531 - 财政年份:2013
- 资助金额:
$ 36.72万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.72万 - 项目类别:
Research Grant