Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
基本信息
- 批准号:9276786
- 负责人:
- 金额:$ 38.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha CellAnimal SourcesArteriesAutologousBiologicalBiological FactorsBiomedical EngineeringBiomimeticsBlood VesselsBypassCaliberCardiacCattleCell LineCell ProliferationCell SurvivalCellsClinicClinicalDataDialysis procedureEffectivenessElderlyEncapsulatedEndothelial CellsEngineeringEvaluationExhibitsFailureFamilyGoalsHarvestHumanImplantIn VitroInnovative TherapyLower ExtremityMeasurementMeasuresMesenchymal Stem CellsMicrospheresModelingMonitorNatureOperative Surgical ProceduresPathologicPatient riskPatientsPerformancePeriodicityProceduresProcessRattusRecruitment ActivityResidenciesRiskSecretory CellSeedsSerumSmooth Muscle MyocytesStandardizationStem cellsSystemTechnologyTestingTimeTissue EngineeringTissue ViabilityVascular GraftWorkangiogenesisbasecardiovascular disorder riskcardiovascular risk factorcell motilitycell typeclinical translationcostdiabeticdiabetic patienthigh riskhigh risk populationin vivoindividual patientinnovationmechanical propertiesmetaplastic cell transformationmonocytenon-diabeticnovelparacrinepreventrelease factorscaffoldstemsuccesstissue culturetreatment strategyvascular tissue engineering
项目摘要
SUMMARY
Vascular grafts that are currently used in small-diameter arterial bypass or in AV access for dialysis are not
ideal and have significant failure rates. Tissue-engineered vascular grafts (TEVGs) using autologous
mesenchymal stem cells (MSCs) show promise, but have two main limitations that may prevent their clinical
translation. First, patients at high risk for cardiovascular disease - such as the elderly and diabetics - have
dysfunctional MSCs which may not be able to yield a viable TEVG. Second, the use of any cell type that
requires extended culture expansion – including MSCs – opens the door to the risk of cellular contamination or
transformation, as well as high costs and a substantial waiting time before a TEVG can be fabricated. The
overall goal of the proposed work is to develop a novel, clinically-viable, rapidly-fabricated, cell-free TEVG. The
overarching hypothesis of this proposal is that secreted factors from human MSCs can be harvested,
packaged, and delivered by “artificial MSCs” (artMSCs) that can then replace the paracrine activity of the
MSCs in our TEVG. Three specific aims will address our hypotheses:
Aim 1: Develop “artificial stem cells” comprised of families of degradable and tunable microspheres loaded
with conditioned media from human MSCs. The goal of the artMSCs is to replace the need for cells in our
TEVG, but maintain their critical secreted factors. We expect that we can encapsulate and time-release the
soluble factors from biologically active human MSC using PLGA microspheres. We will validate this by using
the released factors to drive vascular cell migration and proliferation.
Aim 2: Tune the artMSCs in order to most optimally replace the time course of MSC secretory activity and
residency within an implanted TEVG. This aim will have two parts: A) An in-vivo time course evaluation of
MSC-based TEVGs in a rat model, monitoring presence of implanted MSCs and timing of host SMC and
endothelial cell recruitment and remodeling. B) Utilize this timing information to fabricate discrete families of
artMSCs that will each release their cargo at different times. We expect the net effect of our artMSC families to
approximate the paracrine activity of actively secreting MSC present within the remodeling TEVG.
Aim 3: Test the in vivo efficacy of a TEVG comprised of our artMSCs. For this aim, we will seed the families
of artMSCs into biodegradable scaffolds and evaluate them as a TEVG in a rat model. We expect that a
microsphere-loaded, acellular scaffold will be at least as effective as a TEVG as a scaffold loaded with MSCs.
The TEVGs will be assessed by metrics of success including patency and an artery-like composition.
An innovative therapy based on secreted factors from standardized human MSC cell lines (i.e., from
healthy patients) would offer a uniform treatment strategy from patient to patient than an inherently variable
autologous cell-based strategy. The cell-free nature of our approach is more easily translatable to the clinic,
and the cost and time spent harvesting cells from individual patients would be eliminated.
概括
目前用于小直径动脉旁路或透析 AV 通路的血管移植物不属于
理想且具有显着的故障率。使用自体血管移植物进行组织工程(TEVG)
间充质干细胞(MSC)显示出前景,但有两个主要局限性可能会阻碍其临床应用
翻译。首先,心血管疾病高危患者——例如老年人和糖尿病患者——
功能失调的 MSC 可能无法产生可行的 TEVG。其次,使用任何细胞类型
需要扩展培养物扩增——包括间充质干细胞——打开了细胞污染风险的大门,或者
转型,以及制造 TEVG 之前的高成本和大量等待时间。这
拟议工作的总体目标是开发一种新颖的、临床上可行的、快速制造的无细胞 TEVG。这
该提案的总体假设是可以收获人类 MSC 的分泌因子,
由“人工 MSC”(artMSC)包装和递送,然后可以取代 MSC 的旁分泌活性
我们的 TEVG 中的 MSC。三个具体目标将解决我们的假设:
目标 1:开发由可降解和可调节微球家族组成的“人工干细胞”
使用来自人类 MSC 的条件培养基。 artMSC 的目标是替代我们对细胞的需求
TEVG,但保持其关键的分泌因子。我们期望能够封装并及时释放
使用 PLGA 微球从具有生物活性的人 MSC 中提取可溶性因子。我们将通过使用来验证这一点
释放的因子驱动血管细胞迁移和增殖。
目标 2:调整 artMSC,以最优化地替代 MSC 分泌活动的时间过程和
在植入的 TEVG 内居住。该目标将分为两个部分:A) 体内时间过程评估
大鼠模型中基于 MSC 的 TEVG,监测植入 MSC 的存在以及宿主 SMC 和的时间
内皮细胞募集和重塑。 B) 利用该时序信息来制造离散系列
artMSC 将在不同时间释放其货物。我们预计 artMSC 系列的净效应
近似重塑 TEVG 中存在的主动分泌 MSC 的旁分泌活性。
目标 3:测试由我们的 artMSC 组成的 TEVG 的体内功效。为了这个目标,我们将为家庭播种
将 artMSC 转化为可生物降解的支架,并在大鼠模型中将其作为 TEVG 进行评估。我们期望一个
装载微球的无细胞支架至少与装载 MSC 的 TEVG 一样有效。
TEVG 将通过成功指标进行评估,包括通畅性和动脉样成分。
一种基于标准化人类 MSC 细胞系(即来自
健康的患者)将为患者提供统一的治疗策略,而不是固有的变量
基于自体细胞的策略。我们方法的无细胞性质更容易转化为临床,
从个体患者身上采集细胞所花费的成本和时间也将被消除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Alan Vorp其他文献
Finite element modelling and analyses of nonlinearly elastic, orthotropic, vascular tissue in distension
- DOI:
10.1007/bf02368653 - 发表时间:
1993-11-01 - 期刊:
- 影响因子:5.400
- 作者:
David Alan Vorp - 通讯作者:
David Alan Vorp
David Alan Vorp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Alan Vorp', 18)}}的其他基金
Biomechanics in Regenerative Medicine (BiRM) Training Program
再生医学生物力学 (BiRM) 培训计划
- 批准号:
10628407 - 财政年份:2023
- 资助金额:
$ 38.05万 - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10331850 - 财政年份:2021
- 资助金额:
$ 38.05万 - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10115365 - 财政年份:2021
- 资助金额:
$ 38.05万 - 项目类别:
The Role of Fibrinolysis in Tissue Engineered Vascular Grafts for Aged Individuals
纤溶在老年人组织工程血管移植中的作用
- 批准号:
9979086 - 财政年份:2020
- 资助金额:
$ 38.05万 - 项目类别:
Preclinical optimization and design for manufacturability of immunoregulatory tissue-engineered vascular grafts
免疫调节组织工程血管移植物可制造性的临床前优化和设计
- 批准号:
10054024 - 财政年份:2020
- 资助金额:
$ 38.05万 - 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
- 批准号:
9175164 - 财政年份:2016
- 资助金额:
$ 38.05万 - 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
- 批准号:
9015874 - 财政年份:2016
- 资助金额:
$ 38.05万 - 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
- 批准号:
9260065 - 财政年份:2016
- 资助金额:
$ 38.05万 - 项目类别:
Autologous Stem Cell-Based Tissue Engineered Vascular Grafts
基于自体干细胞的组织工程血管移植物
- 批准号:
8426531 - 财政年份:2013
- 资助金额:
$ 38.05万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 38.05万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 38.05万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 38.05万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 38.05万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 38.05万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 38.05万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 38.05万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 38.05万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 38.05万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 38.05万 - 项目类别:














{{item.name}}会员




