Using Population Vectors to Understand Visual Working Memory for Natural Stimuli
使用群体向量来理解自然刺激的视觉工作记忆
基本信息
- 批准号:10339227
- 负责人:
- 金额:$ 39.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsArchitectureAreaAttentionBehaviorBehavioralBlinkingBrain regionCategoriesClassificationCodeColorComplexComputer ModelsConsensusDataDetectionDiagnosisDiseaseElectroencephalographyEvent-Related PotentialsEye MovementsFaceFrequenciesFunctional Magnetic Resonance ImagingGoalsHumanIndividual DifferencesLifeLiteratureLocationMeasuresMemoryModelingNatureNeural Network SimulationNeuronsNeurosciencesNoisePathway interactionsPatternPerceptionPerformancePersonsPlayPopulationPrimatesPropertyProxyReportingResearchRoleSamplingShort-Term MemorySpecific qualifier valueStimulusStreamStructureSurfaceSystemTestingTo specifyTrainingVisionVisualVisual PerceptionVisual impairmentVocabularyWorkbaseconvolutional neural networkdesignexperimental studyfeedinghuman subjectinsightmachine visionneural patterningobject recognitionrelating to nervous systemresponsetheoriesvectorvisual memoryvisual processingvisual search
项目摘要
Visual working memory plays a fundamental role in visual perception and visually guided behavior, and
much has been learned about the nature of this memory system by studies using arrays of artificial but easily
controlled stimuli (e.g., arrays of colored disks or oriented Gabor patches). However, current quantitative
models of visual working memory based on these artificial stimuli cannot be readily extended to the kinds of
complex, structured scenes that humans face in daily life. The central goal of the proposed research is to
develop and test a new quantitative approach to understanding the representation of complex objects and
scenes in working memory, which will lead to a better understanding of real-world vision.
In our model, a scene is represented in visual working memory as a noisier version of the pattern of
activation that was produced during the perception of that scene. We model this by feeding the scene into a
neural network model of the ventral object recognition pathway and using the resulting pattern of activation
across the population of units (the population vector) as a model of the working memory representation. We
then use this model to make predictions about both behavioral performance and neural activity in human
subjects. For example, the change detection task involves presenting a sample scene followed after delay by a
test scene and asking subjects to report whether the two scenes are the same or different. We can model this
task by feeding the sample and test scenes into the model and computing the distance between the population
vectors for the sample and test scenes. In our preliminary data, we find that the distance between the vectors
can predict behavioral change detection performance extremely well. Moreover, we find that the vector for the
sample scene can predict the pattern of neural activity during the delay between the sample and test scenes
(measured via event-related potentials). Note that previous quantitative models of visual working memory
cannot make any predictions at all for the natural scenes used in these preliminary studies.
We propose testing and extending this model in several ways. First, we will conduct several experiments to
assess the ability of the model to predict behavioral performance and neural activity across a broad range of
natural stimuli. Second, we will compare the ability of population vectors from different cortical regions (as
estimated from the model and from fMRI data) to predict behavioral performance and delay-period activity,
providing new insights into the specific brain regions that underlie visual working memory. Third, we will
determine whether our model can predict performance in visually guided tasks (e.g., visual search) that rely on
visual working memory. Finally, we will assess different versions of our model that implement competing
mechanisms for producing capacity limitations, and we will compare the ability of these models to account for
behavioral performance for both natural scenes and classic examples of artificial stimuli. Together, these
experiments will provide a new and broader understanding of visual working memory.
视觉工作记忆在视觉感知和视觉引导行为中起着重要作用,
通过使用人工但很容易的阵列进行研究,人们对这种记忆系统的本质有了很多了解,
受控刺激(例如,彩色圆盘阵列或定向的Gabor贴片)。然而,目前的定量
基于这些人工刺激的视觉工作记忆模型不能很容易地扩展到
人类在日常生活中所面对的复杂、结构化的场景。拟议研究的中心目标是
开发和测试一种新的定量方法来理解复杂对象的表示,
工作记忆中的场景,这将有助于更好地理解现实世界的视觉。
在我们的模型中,一个场景在视觉工作记忆中表现为一个更嘈杂的版本,
在感知那个场景时产生的激活。我们通过将场景输入到
腹侧物体识别通路的神经网络模型,并使用由此产生的激活模式
作为工作记忆表征的模型。我们
然后用这个模型来预测人类的行为表现和神经活动,
科目例如,变化检测任务涉及呈现样本场景,在延迟之后跟随有
测试场景,并要求受试者报告这两个场景是否相同或不同。我们可以模拟这个
通过将样本和测试场景馈送到模型中并计算总体之间的距离,
示例和测试场景的矢量。在我们的初步数据中,我们发现向量之间的距离
可以很好地预测行为变化检测性能。此外,我们发现,
样本场景可以预测样本场景和测试场景之间延迟期间的神经活动模式
(通过事件相关电位测量)。注意,先前的视觉工作记忆定量模型
我们无法对这些初步研究中使用的自然场景做出任何预测。
我们建议以几种方式测试和扩展这个模型。首先,我们将进行几个实验,
评估模型预测广泛范围内的行为表现和神经活动的能力
自然刺激。其次,我们将比较来自不同皮层区域的群体向量的能力(如
从模型和fMRI数据估计)来预测行为表现和延迟期活动,
为视觉工作记忆的特定大脑区域提供了新的见解。三是
确定我们的模型是否可以预测视觉引导任务中的性能(例如,视觉搜索)依赖于
视觉工作记忆最后,我们将评估我们的模型的不同版本,
生产能力限制的机制,我们将比较这些模型的能力,以说明
自然场景和人工刺激的经典例子的行为表现。所有这些
实验将提供一个新的和更广泛的理解视觉工作记忆。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J LUCK其他文献
STEVEN J LUCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J LUCK', 18)}}的其他基金
Using Population Vectors to Understand Visual Working Memory for Natural Stimuli
使用群体向量来理解自然刺激的视觉工作记忆
- 批准号:
10543101 - 财政年份:2022
- 资助金额:
$ 39.56万 - 项目类别:
Anxiety and Attention: Electrophysiological Measurement of Enhancement and Suppr
焦虑和注意力:增强和抑制的电生理测量
- 批准号:
8690979 - 财政年份:2013
- 资助金额:
$ 39.56万 - 项目类别:
Anxiety and Attention: Electrophysiological Measurement of Enhancement and Suppr
焦虑和注意力:增强和抑制的电生理测量
- 批准号:
8511330 - 财政年份:2013
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
7994242 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
8197018 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
10207183 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
8591398 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
9222043 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
8390486 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
10348210 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 39.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 39.56万 - 项目类别:
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 39.56万 - 项目类别:
Research Grants
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 39.56万 - 项目类别:
Standard Grant
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 39.56万 - 项目类别:
Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
- 批准号:
26420620 - 财政年份:2014
- 资助金额:
$ 39.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2011
- 资助金额:
$ 39.56万 - 项目类别:
Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
- 批准号:
22760469 - 财政年份:2010
- 资助金额:
$ 39.56万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2010
- 资助金额:
$ 39.56万 - 项目类别:
Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2009
- 资助金额:
$ 39.56万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




