TRD1 - Multimodal Imaging for Spanning Multiple Spatial Scales in the Brain
TRD1 - 跨越大脑多个空间尺度的多模态成像
基本信息
- 批准号:10376732
- 负责人:
- 金额:$ 27.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsBehaviorBehavioralBlood VesselsBlood VolumeBlood capillariesBlood flowBody partBrainBrain imagingCellsCollectionComplementContrast MediaCore-Binding FactorDataDevelopmentDiffusion Magnetic Resonance ImagingElectrodesElectrophysiology (science)EnvironmentFelis catusFerretsFunctional Magnetic Resonance ImagingFunctional disorderFundingFutureGlutamatesHeterogeneityHumanImageIndividualInvestmentsLinkMacacaMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMediatingMethodologyMethodsMinnesotaModelingMotionMultimodal ImagingNatureNeuronsNoiseOptical MethodsOpticsPhotonsPhysiologic pulsePhysiologicalProcessRF coilReporterReportingResearchResolutionRespirationRestSamplingSignal TransductionSourceSpin LabelsStimulusSynapsesTechniquesTechnologyTimeTranslatingVisual system structurearterioleawakebasecalcium indicatorcomputer studiescomputerized data processingconnectomeexperimental studyhemodynamicshuman imagingimage reconstructionimaging facilitiesimaging modalityimprovedinstrumentationmagnetic fieldmetabolic imagingmulti-photonmultiphoton imagingmultiphoton microscopyneuroimagingneurotransmissionneurovascularneurovascular couplingnonhuman primateprogramsresponsesensorspatiotemporaltwo-photonvenule
项目摘要
Project Summary/Abstract
Brain function is mediated by hierarchical local and long-range circuits organized across multiple spatial
scales. Bridging and spanning these scales of organization is essential for understanding brain function and
ultimately dysfunction; however, no single existing technology can accomplish this daunting task. Human brain
activity and connectivity can be studied with non-invasive magnetic resonance (MR) methods that can cover
the entire brain. However, the spatiotemporal resolution and fidelity to neuronal activity is limited because of
the intervening neurovascular coupling that is the source of the MR mapping signals. These limitations can be
overcome if MR resolutions and fidelity can be improved so as to reduce the heterogeneity of the responses
within an MR voxel and, in addition, the MR method is combined with other techniques that simultaneously
report on neuronal and/or neurovascular responses, ideally sampling the activity within one or more MR voxels
at the single neuron, synapse or vessel level. Besides interrogating the link between neuronal activity and the
MR based functional mapping signals, the complementary nature of such a combination of techniques would
provide the means for bridging the multiple spatial and temporal scales, going from the cellular and synaptic
level to coordinated activity over billions of neurons spanning large parts of the brain, if not the entire brain.
This TRD approaches this problem by proposing to develop i) advanced MR methods for imaging brain
function and connectivity at unprecedented spatial resolution using very high magnetic fields, ii) combining
such MR measurements with simultaneous measurements of multi-photon recordings of neural signals (at
single cell and/or synapse level) and corresponding hemodynamic responses at the level of individual
arterioles, capillaries and venules, within the environment of an ultrahigh field (UHF) magnet on the same
animal and under the same experimental conditions. Because of the invasive nature of the optical methods the
combined experiments can only be performed in animal models while the MR techniques to be developed
would be applicable to human imaging as well.
项目摘要/摘要
大脑功能是由在多个空间上组织的层次局部和远程电路介导的
秤。桥接和跨越这些组织规模对于理解大脑功能和
最终功能障碍;但是,没有任何现有技术可以完成这项艰巨的任务。人脑
可以使用无创磁共振(MR)方法来研究活动和连通性
整个大脑。然而,由于时空分辨率和对神经元活动的保真度受到限制
中间神经血管耦合是MR映射信号的来源。这些限制可以是
克服MR分辨率和保真度可以改善以减少响应的异质性
在MR Voxel中,此外,MR方法与其他同时的技术合并
关于神经元和/或神经血管反应的报告,理想情况下,在一个或多个MR中取样了活性
在单个神经元中,突触或血管水平。除了询问神经元活动与
基于MR的功能映射信号,这种技术组合的互补性将
提供桥接多个空间和时间尺度的手段,从细胞和突触传播
跨越数十亿个神经元(即使不是整个大脑)的数十亿个神经元的协调活动的水平。
该TRD通过建议开发i)成像大脑的高级MR方法来解决此问题
使用非常高磁场的空间空间分辨率下的功能和连通性,ii)合并
通过同时测量神经信号的多光子记录(在
单细胞和/或突触水平)和相应的血液动力学反应在个体水平上
在超高磁场(UHF)磁铁的环境中,动脉,毛细血管和静脉
动物并在相同的实验条件下。由于光学方法的侵入性
合并实验只能在动物模型中进行,而要开发的MR技术
也适用于人类成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAMIL UGURBIL其他文献
KAMIL UGURBIL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAMIL UGURBIL', 18)}}的其他基金
TRD1 - Multimodal Imaging for Spanning Multiple Spatial Scales in the Brain
TRD1 - 跨越大脑多个空间尺度的多模态成像
- 批准号:
10549852 - 财政年份:2019
- 资助金额:
$ 27.74万 - 项目类别:
Elementary Neuronal Ensembles to Whole Brain Networks: Ultrahigh Resolution Imaging of Function and Connectivity in Humans
基本神经元集合到全脑网络:人类功能和连接性的超高分辨率成像
- 批准号:
10250317 - 财政年份:2017
- 资助金额:
$ 27.74万 - 项目类别:
Elementary Neuronal Ensembles to Whole Brain Networks: Ultrahigh Resolution Imaging of Function and Connectivity in Humans
基本神经元集合到全脑网络:人类功能和连接性的超高分辨率成像
- 批准号:
9766293 - 财政年份:2017
- 资助金额:
$ 27.74万 - 项目类别:
Institutional Center Cores for Advanced Neuroimaging
高级神经影像机构中心核心
- 批准号:
8452942 - 财政年份:2012
- 资助金额:
$ 27.74万 - 项目类别:
Institutional Center Cores for Advanced Neuroimaging
高级神经影像机构中心核心
- 批准号:
8699282 - 财政年份:2012
- 资助金额:
$ 27.74万 - 项目类别:
Institutional Center Cores for Advanced Neuroimaging
高级神经影像机构中心核心
- 批准号:
10005492 - 财政年份:2012
- 资助金额:
$ 27.74万 - 项目类别:
Institutional Center Cores for Advanced Neuroimaging
高级神经影像机构中心核心
- 批准号:
8915758 - 财政年份:2012
- 资助金额:
$ 27.74万 - 项目类别:
Institutional Center Cores for Advanced Neuroimaging
高级神经影像机构中心核心
- 批准号:
9120422 - 财政年份:2012
- 资助金额:
$ 27.74万 - 项目类别:
相似国自然基金
低氧诱导的外泌体OTUB1调控血管瘤内皮细胞生物学行为的作用及机制研究
- 批准号:81901022
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
自闭症动物模型嗅觉恐惧反应异常的神经环路解析
- 批准号:31900715
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高脂饮食促进果蝇和大鼠觅食行为的神经机制研究
- 批准号:31800883
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于eNOS功能障碍创建可逆性脑血管收缩综合征(RCVS)小鼠模型的研究
- 批准号:81873753
- 批准年份:2018
- 资助金额:81.0 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 27.74万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 27.74万 - 项目类别:
Metal-free, genetically encoded reporters for calcium recording with MRI
用于 MRI 钙记录的无金属基因编码报告基因
- 批准号:
10660042 - 财政年份:2023
- 资助金额:
$ 27.74万 - 项目类别: