Transition Metal Homeostasis and Reactive Sulfur Species in Bacterial Pathogens
细菌病原体中的过渡金属稳态和活性硫物种
基本信息
- 批准号:10396075
- 负责人:
- 金额:$ 45.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAnalytical ChemistryAnti-Bacterial AgentsAntibioticsAntioxidantsAreaBacteriaBiogenesisBioinorganic ChemistryBiological ProcessCellsCommunicable DiseasesConsensusDevelopmentDrug Metabolic DetoxicationFoundationsGenetic TranscriptionHealthHomeostasisHumanHydrogen SulfideInfectionInorganic ChemistryIronKineticsKnowledgeLifeLinkMass Spectrum AnalysisMediatingMethodsMicrobial PhysiologyModificationMultidrug-resistant AcinetobacterNosocomial InfectionsNutrientNutritional ImmunityOrganismOxidesOxygenPathway interactionsPositioning AttributeProcessProteinsProteomicsReactive Nitrogen SpeciesRelaxationRepressor ProteinsResearchSignal TransductionSignaling MoleculeSpecies SpecificityStaphylococcus aureusStarvationStreptococcus pneumoniaeSulfurTranscription RepressorTranscriptional RegulationTransition ElementsZincantimicrobialbasebiophysical chemistrydesignexperimental studyhuman pathogeninnovationinterdisciplinary approachinterestmetal poisoningnovelpathogenpathogenic bacteriaprogramsrespiratory pathogensensorweapons
项目摘要
ABSTRACT
Bacterial infectious disease is a global threat to human health and there is an urgent need to develop new
antimicrobials that limit the impact of life-threatening pathogens. These pathogens include the major causative
agents of nosocomial infections, e.g., Acinetobacter baumannii and Staphylococcus aureus, and a major
respiratory pathogen, Streptococcus pneumoniae. In this renewal application, we seek continuation of our
innovative, strongly integrated and topical research program positioned at an intersection of inorganic chemistry
and microbial physiology, designed to tackle significant gaps in our knowledge in bacterial transition metal
homeostasis (metallostasis) and hydrogen sulfide homeostasis. My group has long-standing interests in the
transcriptional repressor proteins (metallosensors) and metallochaperones that allow a bacterium to respond to
host efforts to restrict transition metal availability or induce metal toxicity. Our subsequent discovery of
transcriptional regulators that “sense” downstream more oxidized forms of hydrogen sulfide, collectively termed
reactive sulfur species (RSS), is foundational to our understanding of hydrogen sulfide signaling via protein
persulfidation (S-sulfuration). Indeed, an emerging consensus holds that the biogenesis of hydrogen sulfide and
RSS provides protection against host weapons reactive oxygen and reactive nitrogen species, and antibiotics,
where they function as antioxidants and signaling molecules. Future research will be carried out in four general
areas: 1) Investigating allostery in transcriptional regulation, where we extend our comprehensive physical
description of metallosensors as dynamically-anchored “allosteric inorganic switches” to RSS sensors, using
state-of-the-art methyl-specific NMR relaxation experiments and a novel mass spectrometry-based kinetic
profiling method used to elucidate the broad principles of RSS specificity in diverse structural classes of
regulators; 2) critically evaluate the RSS signaling hypothesis in A. baumannii, which posits that persulfidation is
a regulatory modification, completely unexplored in bacteria; 3) deduce the global impact of host transition metal
(zinc, iron) starvation (nutritional immunity) using complementary proteomics and metalloproteomics workflows
to define changes in the metalloproteome while identifying metallochaperone targets, in A. baumannii; and 4)
elucidate a poorly understood, infection-relevant iron-catecholate acquisition and detoxification pathway in S.
pneumoniae. Our multidisciplinary approach, which seamlessly spans biophysical, bioinorganic and analytical
chemistries to microbial physiology, will transform our understanding of foundational principles of pathogen
metallostasis and hydrogen sulfide/RSS biogenesis in an effort to discover and characterize new players and
biological processes that can be targeted by novel antibacterial strategies.
摘要
细菌传染病是威胁人类健康的全球性疾病,迫切需要开发新的
限制危及生命的病原体影响的抗菌剂。这些病原体包括主要致病原
医院感染的病原体,如鲍曼不动杆菌和金黄色葡萄球菌,以及一种主要的
呼吸道病原体肺炎链球菌。在此续期申请中,我们寻求延续我们的
位于无机化学交叉点的创新、高度集成和专题研究计划
和微生物生理学,旨在解决我们在细菌过渡金属知识方面的重大空白
稳态(金属沉积)和硫化氢稳态。我的团队长期在
转录抑制蛋白(金属传感器)和金属配位体,使细菌对
限制过渡金属可获得性或导致金属毒性的努力。我们随后发现的
“感应”下游更多氧化形式的硫化氢的转录调控因子,统称为
活性硫物种(RSS)是我们理解通过蛋白质传递硫化氢信号的基础
过硫化(S-硫化)。事实上,一个新出现的共识认为,硫化氢的生物形成和
RSS提供对宿主武器活性氧和活性氮物种以及抗生素的保护,
在那里它们作为抗氧化剂和信号分子发挥作用。未来的研究将从四个方面进行
领域:1)研究转录调控中的变构,在那里我们扩展了我们的综合物理
将金属传感器描述为动态锚定到RSS传感器的“变构无机开关”,使用
最新的甲基核磁共振弛豫实验和基于质谱学的动力学
用于阐明RSS在不同结构类别中的特异性的广泛原则的剖析方法
2)对鲍曼不动杆菌的RSS信号假说进行了批判性的评估,该假说认为过硫化作用是
一种完全未在细菌中发现的调节性修饰;3)推断宿主过渡金属的全球影响
使用互补蛋白质组和金属蛋白质组工作流程的(锌、铁)饥饿(营养免疫)
在确定鲍曼不动杆菌金属蛋白靶标的同时,确定金属蛋白质组的变化;以及4)
阐明了一种鲜为人知的、与感染相关的儿茶酚铁获取和解毒途径。
肺炎。我们的多学科方法,无缝跨越生物物理、生物无机和分析
从化学到微生物生理学,将改变我们对病原体基本原理的理解
金属沉积和硫化氢/RSS生物发生,努力发现和表征新的参与者和
可以被新的抗菌策略作为目标的生物过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID P. GIEDROC其他文献
DAVID P. GIEDROC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID P. GIEDROC', 18)}}的其他基金
The role of the ZNG1 metallochaperone in the host response to infection
ZNG1 金属伴侣在宿主感染反应中的作用
- 批准号:
10753132 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Graduate Training Program in Quantitative and Chemical Biology at Indiana University Bloomington
印第安纳大学伯明顿分校定量和化学生物学研究生培训项目
- 批准号:
10633310 - 财政年份:2019
- 资助金额:
$ 45.49万 - 项目类别:
Graduate Training Program in Quantitative and Chemical Biology at Indiana University Bloomington
印第安纳大学伯明顿分校定量和化学生物学研究生培训项目
- 批准号:
10201659 - 财政年份:2019
- 资助金额:
$ 45.49万 - 项目类别:
Graduate Training Program in Quantitative and Chemical Biology at Indiana University Bloomington
印第安纳大学伯明顿分校定量和化学生物学研究生培训项目
- 批准号:
10412039 - 财政年份:2019
- 资助金额:
$ 45.49万 - 项目类别:
Interplay of Transition Metal Homeostasis and Reactive Sulfur Species in Bacterial Pathogens
细菌病原体中过渡金属稳态与活性硫的相互作用
- 批准号:
9071683 - 财政年份:2016
- 资助金额:
$ 45.49万 - 项目类别:
Transition Metal Homeostasis and Reactive Sulfur Species in Bacterial Pathogens
细菌病原体中的过渡金属稳态和活性硫物种
- 批准号:
10625271 - 财政年份:2016
- 资助金额:
$ 45.49万 - 项目类别:
Graduate Program in Quantitative and Chemical Biology at Indiana University Bloom
印第安纳大学布鲁姆分校定量与化学生物学研究生课程
- 批准号:
8875021 - 财政年份:2014
- 资助金额:
$ 45.49万 - 项目类别:
Graduate Program in Quantitative and Chemical Biology at Indiana University Bloom
印第安纳大学布鲁姆分校定量与化学生物学研究生课程
- 批准号:
8667113 - 财政年份:2014
- 资助金额:
$ 45.49万 - 项目类别:
Graduate Program in Quantitative and Chemical Biology at Indiana University Bloom
印第安纳大学布鲁姆分校定量与化学生物学研究生课程
- 批准号:
9306131 - 财政年份:2014
- 资助金额:
$ 45.49万 - 项目类别:
New mechanisms of sulfur sensing and trafficking in Staphylococcus aureus.
金黄色葡萄球菌硫传感和运输的新机制。
- 批准号:
8640194 - 财政年份:2011
- 资助金额:
$ 45.49万 - 项目类别:
相似海外基金
Aquatic Analytical Chemistry
水生分析化学
- 批准号:
CRC-2018-00279 - 财政年份:2022
- 资助金额:
$ 45.49万 - 项目类别:
Canada Research Chairs
Spatially Resolved Analytical Chemistry: Magnetic Resonance and Magnetic Resonance Imaging of Materials and Processes.
空间分辨分析化学:材料和过程的磁共振和磁共振成像。
- 批准号:
RGPIN-2022-04003 - 财政年份:2022
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Grants Program - Individual
Analytical Chemistry of Proteins and Peptides
蛋白质和肽的分析化学
- 批准号:
RGPIN-2020-04677 - 财政年份:2022
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Grants Program - Individual
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
- 批准号:
RGPIN-2015-06122 - 财政年份:2021
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Grants Program - Individual
Aquatic Analytical Chemistry
水生分析化学
- 批准号:
CRC-2018-00279 - 财政年份:2021
- 资助金额:
$ 45.49万 - 项目类别:
Canada Research Chairs
Droplet-Based Analytical Chemistry Platforms Using Superhydrophobic and Superamphiphobic Surfaces
使用超疏水和超双疏表面的基于液滴的分析化学平台
- 批准号:
RGPIN-2016-04790 - 财政年份:2021
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Grants Program - Individual
Analytical Chemistry of Proteins and Peptides
蛋白质和肽的分析化学
- 批准号:
RGPIN-2020-04677 - 财政年份:2021
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




