Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
基本信息
- 批准号:10404639
- 负责人:
- 金额:$ 37.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAftercareAge related macular degenerationAlgorithmsAngiographyAreaArtificial IntelligenceBiological MarkersBlindnessChildChildhoodClassificationClinicalClinical TrialsComputer softwareConsensusCoupledCross-Sectional StudiesDataDevelopmentDevicesDiabetic RetinopathyDiagnosisDiseaseDisease ProgressionDyesEarly DiagnosisEarly InterventionEarly treatmentEvaluationEyeFluorescein AngiographyFundingFundusFutureGoalsImageImage AnalysisInjectionsInstitutionIntelligenceInternationalKnowledgeLasersLeadLengthLongitudinal StudiesMeasurementMedical ImagingMethodsMonitorMorphologic artifactsMotionNatural HistoryNeonatalOphthalmic examination and evaluationOphthalmoscopesOptical Coherence TomographyOpticsOutcomePatientsPerformancePeripheralPhenotypePilot ProjectsPopulationPrimary Health CarePrognosisPublishingQuantitative EvaluationsRetinaRetinal DetachmentRetinal NeovascularizationRetinopathy of PrematurityRiskScanningSeveritiesSeverity of illnessSourceSpeedSystemSystematic BiasTechnologyTestingTimeTranslationsUnited States National Institutes of HealthVariantVascular DiseasesVisualizationaccurate diagnosisarmawakebaseblindclinical diagnosisclinically significantdata acquisitiondeep learningdesigndiabeticdisease classificationdisorder of macula of retinaimage processingimaging Segmentationimprovedimproved outcomeinstrumentinterestlensmacular edemaneonateneovascularizationnovelovertreatmentparallel computerportabilityprototypereal-time imagesresearch clinical testingroutine screeningsample fixationsoftware systemsstandard of caretreatment responsetreatment risk
项目摘要
PROJECT SUMMARY
The long-term goal of this project is to determine whether optical coherence tomography (OCT) and OCT
angiography (OCTA) might lead more accurate and objective diagnosis, earlier intervention, and improved
outcomes in retinopathy of prematurity (ROP). International consensus and National Institute of Health (NIH)
funded clinical trials over the last 30 years have defined the phenotypic classifications, natural history, prognosis,
and management of ROP. However, it is well established that due to the subjectivity of the ophthalmoscopic
examination, and systematic bias between examiners, there is significant variation in treatment of the most
severe forms of ROP in the real world. This leads to both under-treatment (and poor outcomes due to retinal
detachment) and over-treatment (exposing neonates to the ocular and systemic risks of treatment). Roughly
20,000 babies per year develop retinal detachments (RD) due to ROP and there is strong evidence that most of
these are preventable. In adult retinal vascular diseases, most notably diabetic retinopathy (DR), OCT and OCTA
can detect and quantify disease features such as diabetic macular edema (DME) and retinal neovascularization
(NV) before they are noted clinically, enabling earlier treatment and reducing the risk of blindness from RD.
However, evaluating the use of this technology in neonates requires high speed and portable technology, and
the commercially available handheld OCTs are too slow for ultra-widefield (UWF) OCT and OCTA imaging.
Several groups (including our own) have published preliminary results using prototype 100 to 200 kHz swept-
source (SS) OCT systems, however consistent data acquisition remains challenging due to the lack of fixation
and subsequent motion in an awake neonate, which has limited the evaluation of the potential benefits of the
technology in this population. Recently, there has been much interest in using artificial intelligence (AI)
(specifically deep learning), which relies on high speed graphics processing units (GPUs) to provide real time
OCT image processing, segmentation, and tracking. This application addresses 2 fundamental gaps in
knowledge: (1) Can we overcome the technical challenges through the development of a faster ultrawide-field
view SS-OCT system coupled with a GPU-enabled DL software system to enable consistent data acquisition in
neonates? (2) Would quantitative objective metrics of ROP improve objectivity of ROP diagnosis and detect
subclinical signs of disease progression which may enable earlier intervention and improved outcomes in the
future. By leveraging our institution’s OCT, AI, and ROP expertise, we will address these questions in three
specific aims: (1) Develop an ultra-high speed, handheld, panoramic ultra-widefield OCT/OCTA system. (2)
Develop real time GPU accelerated intelligent image acquisition software. (3) Evaluate the clinical significance
OCT derived biomarkers. Successful translation of this technology to the ROP population could improve the
accuracy and objectivity of ROP diagnosis, and lead to earlier intervention and improved outcomes in patients
with severe ROP.
项目摘要
本项目的长期目标是确定光学相干断层扫描(OCT)和OCT
血管造影(OCTA)可提高诊断准确性和客观性,早期干预,
早产儿视网膜病变(ROP)。国际共识和美国国立卫生研究院(NIH)
在过去30年中资助的临床试验已经定义了表型分类、自然史、预后,
管理ROP。然而,众所周知,由于检眼镜的主观性,
考试,和系统之间的偏见考官,有显着的变化,在治疗的最
真实的世界中的严重ROP形式。这导致治疗不足(以及由于视网膜病变导致的不良结果)。
脱离)和过度治疗(使新生儿暴露于治疗的眼部和全身风险)。大致
每年有20,000名婴儿因ROP而患上视网膜脱离(RD),并且有强有力的证据表明,大多数
这些都是可以预防的。在成人视网膜血管疾病中,最明显的是糖尿病视网膜病变(DR),OCT和OCTA
可以检测和量化糖尿病性黄斑水肿(DME)和视网膜新生血管等疾病特征
(NV)在临床上发现之前,使早期治疗和减少RD失明的风险成为可能。
然而,评估该技术在新生儿中的使用需要高速和便携式技术,
市售的手持OCT对于超宽视场(UWF)OCT和OCTA成像来说太慢。
几个小组(包括我们自己的)已经发表了使用原型100至200 kHz扫频的初步结果,
然而,由于缺乏固定,一致的数据采集仍然具有挑战性
以及随后的清醒新生儿的运动,这限制了对
技术在这个人群中。最近,人们对使用人工智能(AI)
(特别是深度学习),它依赖于高速图形处理单元(GPU)来提供真实的时间
OCT图像处理、分割和跟踪。此应用程序解决了以下两个基本差距:
知识:(1)我们能否通过开发更快的超宽视场来克服技术挑战?
查看SS-OCT系统与支持GPU的DL软件系统耦合,以实现一致的数据采集,
新生儿?(2)ROP的定量客观度量是否会提高ROP诊断和检测的客观性
疾病进展的亚临床体征,这可能使早期干预和改善的结果,
未来通过利用我们机构的OCT,AI和ROP专业知识,我们将在三个方面解决这些问题
具体目标:(1)研制超高速、手持式、全景式超宽视场OCT/OCTA系统。(二)
开发真实的GPU加速智能图像采集软件。(3)评价其临床意义
OCT衍生的生物标志物。成功地将这项技术转化为ROP人群可以提高
ROP诊断的准确性和客观性,并导致早期干预和改善患者的结局
严重的ROP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Peter Campbell其他文献
Influence of serial retinal images on the diagnosis and management of retinopathy of prematurity (ROP)
- DOI:
10.1016/j.jaapos.2018.07.216 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Shin Hae Park;Kai Kang;Sang Jin Kim;Karyn Jonas;Susan Ostmo;John Peter Campbell;Michael F. Chiang;R.V. Paul Chan - 通讯作者:
R.V. Paul Chan
John Peter Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Peter Campbell', 18)}}的其他基金
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
$ 37.73万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10612906 - 财政年份:2020
- 资助金额:
$ 37.73万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10198930 - 财政年份:2020
- 资助金额:
$ 37.73万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10431850 - 财政年份:2010
- 资助金额:
$ 37.73万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10620354 - 财政年份:2010
- 资助金额:
$ 37.73万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10206145 - 财政年份:2010
- 资助金额:
$ 37.73万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
9974137 - 财政年份:2010
- 资助金额:
$ 37.73万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 37.73万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 37.73万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 37.73万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 37.73万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 37.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 37.73万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 37.73万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 37.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 37.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 37.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




