Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
基本信息
- 批准号:10620354
- 负责人:
- 金额:$ 59.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsAreaArtificial IntelligenceBioinformaticsBiomedical ResearchBlindnessBlood VesselsCaringChildhoodClinicalClinical MedicineCohort StudiesComputational BiologyDataDetectionDevelopmentDiagnosisDiseaseDisease ManagementDisparateEducationEnvironmentEvaluationExpert SystemsFeedbackFundingGene ExpressionGenesGeneticGenetic MarkersGenetic RiskGenomicsGenotypeGoalsGrantHealthImageImage AnalysisInfantInformaticsInformation ManagementInternationalKnowledgeMachine LearningMacular degenerationMeasurementMendelian randomizationMethodsModelingMolecularNetwork-basedOphthalmologyOther GeneticsPaperPathogenesisPeer ReviewPerceptionPerformancePhenotypePredispositionPremature BirthPremature InfantPublishingReference StandardsResearchResearch PersonnelRetinaRetinopathy of PrematurityRiskRisk FactorsSeveritiesSystemTechnologyTestingUnited StatesValidationVascular DiseasesVisualizationWorkanalytical toolartificial intelligence methodbiomedical informaticscare deliveryclinical diagnosisclinical examinationclinical phenotypeclinical riskclinically significantcomputer sciencedata accessdata integrationdeep learningdetection platformdiagnosis standarddisorder riskfeature extractiongenetic analysisgenetic varianthigh riskimprovedinsightmachine learning predictionmodel buildingmultidisciplinarymultiple data typesneovascularneural networknovelophthalmic examinationphenotypic dataprospectiveprototypereal world applicationrecruitretinal imagingrisk prediction modelscreeningserial imagingsupplemental oxygen
项目摘要
Project Summary
The long-term goal of this project is to establish a quantitative framework for retinopathy of prematurity (ROP)
care based on clinical, imaging, genetic, and informatics principles. In the previous grant period, we have
developed artificial intelligence methods for ROP diagnosis, but real-world adoption has been limited by lack of
prospective validation and by perception of these systems as “black boxes” that do not explain their rationale
for diagnosis. Furthermore, although biomedical research data are being generated at an enormous pace,
much less work has been done to integrate disparate scientific findings across the spectrum from genomics to
imaging to clinical medicine. This renewal will address current gaps in knowledge in these areas. Our overall
hypotheses are that developing a quantitative framework for ROP care using artificial intelligence and analytics
will improve clinical disease management, that building “explainable” artificial intelligence systems will enhance
clinical acceptance and educational opportunities, and that analysis of relationships among clinical, imaging,
environmental, and genetic findings, in ROP will improve understanding of disease pathogenesis and risk.
These hypotheses will be tested using three Specific Aims: (1) Evaluation performance of an artificial
intelligence system for ROP diagnosis and screening prospectively. This will include: (a) recruit a target of over
2000 eye exams including wide-angle retinal images from 375 subjects at 5 centers, (b) optimize an image
quality detection algorithm we have recently developed, and (c) analyze system accuracy for ROP diagnosis
and screening (using a novel quantitative vascular severity scale). (2) Improve the interpretability of our
existing artificial intelligence methods for ROP diagnosis. This will include: (a) increase “explainability” of
systems by combining deep learning with traditional feature extraction methods, (b) develop neural networks to
identify changes between serial images, and (c) evaluate these methods through systematic feedback by
experts. (3) Develop integrated models for ROP pathogenesis and risk. This will include: (a) build and improve
ROP risk prediction models based on clinical, image, and demographic features, and (b) integrate genetic,
imaging, clinical, and environmental variables through genetic risk prediction by machine learning, by
investigating casual relationships with genetic variants and genetic risk scores, and by incorporating SNP
associations with gene expression measurements to identify functional genes of ROP. Ultimately, these
studies will significantly reduce barriers to adoption of technologies such as artificial intelligence for clinicians,
and will demonstrate a prototype for health information management which combines genotypic and
phenotypic data. This project will be performed by a multi-disciplinary team of investigators who have worked
successfully together for nearly 10 years, and who have expertise in ophthalmology, biomedical informatics,
computer science, computational biology, ophthalmic genetics, genetic analysis, and statistical genetics.
项目概要
该项目的长期目标是建立早产儿视网膜病变(ROP)的定量框架
基于临床、影像、遗传和信息学原理的护理。在上一个资助期内,我们有
开发了用于 ROP 诊断的人工智能方法,但由于缺乏
前瞻性验证以及将这些系统视为“黑匣子”,无法解释其基本原理
用于诊断。此外,尽管生物医学研究数据正在以惊人的速度生成,
在整合从基因组学到跨领域的不同科学发现方面所做的工作要少得多。
影像学到临床医学。此次更新将解决这些领域目前的知识差距。我们的整体
假设使用人工智能和分析开发 ROP 护理的定量框架
将改善临床疾病管理,建立“可解释的”人工智能系统将增强
临床接受度和教育机会,以及对临床、影像、
ROP 中的环境和遗传发现将提高对疾病发病机制和风险的了解。
这些假设将使用三个具体目标进行测试:(1)人工的评估性能
ROP 前瞻性诊断和筛查的智能系统。这将包括: (a) 招募超过
2000 次眼科检查,包括 5 个中心 375 名受试者的广角视网膜图像,(b) 优化图像
我们最近开发的质量检测算法,以及 (c) 分析 ROP 诊断的系统准确性
和筛查(使用新型定量血管严重程度量表)。 (2) 提高我们的可解释性
现有用于 ROP 诊断的人工智能方法。这将包括: (a) 增加“可解释性”
通过将深度学习与传统特征提取方法相结合的系统,(b)开发神经网络
识别连续图像之间的变化,并且(c)通过系统反馈评估这些方法
专家。 (3) 开发ROP发病机制和风险的综合模型。这将包括: (a) 建立和改进
基于临床、图像和人口特征的 ROP 风险预测模型,以及 (b) 整合遗传、
通过机器学习进行遗传风险预测,通过成像、临床和环境变量
研究与遗传变异和遗传风险评分的因果关系,并通过纳入 SNP
与基因表达测量的关联以确定 ROP 的功能基因。最终,这些
研究将显着减少临床医生采用人工智能等技术的障碍,
并将展示一个健康信息管理原型,该原型结合了基因型和
表型数据。该项目将由多学科研究人员团队执行,这些研究人员曾在
成功合作近 10 年,他们在眼科、生物医学信息学、
计算机科学、计算生物学、眼科遗传学、遗传分析和统计遗传学。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementation and evaluation of a tele-education system for the diagnosis of ophthalmic disease by international trainees.
国际学员诊断眼科疾病的远程教育系统的实施和评估。
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Campbell,JPeter;Swan,Ryan;Jonas,Karyn;Ostmo,Susan;Ventura,CamilaV;Martinez-Castellanos,MariaA;Anzures,RachelleGoAngSam;Chiang,MichaelF;Chan,RVPaul
- 通讯作者:Chan,RVPaul
Image analysis for retinopathy of prematurity: where are we headed?
早产儿视网膜病变的图像分析:我们将走向何方?
- DOI:10.1016/j.jaapos.2012.08.001
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Chiang,MichaelF
- 通讯作者:Chiang,MichaelF
Toward a severity index for ROP: An unsupervised approach.
制定 ROP 严重程度指数:一种无监督方法。
- DOI:10.1109/embc.2016.7590948
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:PengTian;Ataer-Cansizoglu,Esra;Kalpathy-Cramer,Jayashree;Ostmo,Susan;Jonas,Karyn;Chan,RVPaul;Campbell,JPeter;Chiang,MichaelF;Erdogmus,Deniz
- 通讯作者:Erdogmus,Deniz
Operationalization of Retinopathy of Prematurity Screening by the Application of the Essential Public Health Services Framework.
通过应用基本公共卫生服务框架来实施早产儿视网膜病变筛查。
- DOI:10.1097/iio.0000000000000448
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sobhy,Myrna;Cole,Emily;Jabbehdari,Sayena;Valikodath,NitaG;Al-Khaled,Tala;Kalinoski,Lauren;Chervinko,Margaret;Cherwek,DavidHunter;Chuluunkhuu,Chimgee;Shah,ParagK;KC,Sagun;Jonas,KarynE;Scanzera,Angel;Yap,VivienL;Yeh,Steven
- 通讯作者:Yeh,Steven
Accuracy of retinopathy of prematurity diagnosis by retinal fellows.
- DOI:10.1097/iae.0b013e3181c9696a
- 发表时间:2010-06
- 期刊:
- 影响因子:0
- 作者:Paul Chan RV;Williams SL;Yonekawa Y;Weissgold DJ;Lee TC;Chiang MF
- 通讯作者:Chiang MF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Peter Campbell其他文献
Influence of serial retinal images on the diagnosis and management of retinopathy of prematurity (ROP)
- DOI:
10.1016/j.jaapos.2018.07.216 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Shin Hae Park;Kai Kang;Sang Jin Kim;Karyn Jonas;Susan Ostmo;John Peter Campbell;Michael F. Chiang;R.V. Paul Chan - 通讯作者:
R.V. Paul Chan
John Peter Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Peter Campbell', 18)}}的其他基金
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10612906 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10404639 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10198930 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10431850 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10206145 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
9974137 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Standard Grant














{{item.name}}会员




