Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity

人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变

基本信息

  • 批准号:
    10612906
  • 负责人:
  • 金额:
    $ 37.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The long-term goal of this project is to determine whether optical coherence tomography (OCT) and OCT angiography (OCTA) might lead more accurate and objective diagnosis, earlier intervention, and improved outcomes in retinopathy of prematurity (ROP). International consensus and National Institute of Health (NIH) funded clinical trials over the last 30 years have defined the phenotypic classifications, natural history, prognosis, and management of ROP. However, it is well established that due to the subjectivity of the ophthalmoscopic examination, and systematic bias between examiners, there is significant variation in treatment of the most severe forms of ROP in the real world. This leads to both under-treatment (and poor outcomes due to retinal detachment) and over-treatment (exposing neonates to the ocular and systemic risks of treatment). Roughly 20,000 babies per year develop retinal detachments (RD) due to ROP and there is strong evidence that most of these are preventable. In adult retinal vascular diseases, most notably diabetic retinopathy (DR), OCT and OCTA can detect and quantify disease features such as diabetic macular edema (DME) and retinal neovascularization (NV) before they are noted clinically, enabling earlier treatment and reducing the risk of blindness from RD. However, evaluating the use of this technology in neonates requires high speed and portable technology, and the commercially available handheld OCTs are too slow for ultra-widefield (UWF) OCT and OCTA imaging. Several groups (including our own) have published preliminary results using prototype 100 to 200 kHz swept- source (SS) OCT systems, however consistent data acquisition remains challenging due to the lack of fixation and subsequent motion in an awake neonate, which has limited the evaluation of the potential benefits of the technology in this population. Recently, there has been much interest in using artificial intelligence (AI) (specifically deep learning), which relies on high speed graphics processing units (GPUs) to provide real time OCT image processing, segmentation, and tracking. This application addresses 2 fundamental gaps in knowledge: (1) Can we overcome the technical challenges through the development of a faster ultrawide-field view SS-OCT system coupled with a GPU-enabled DL software system to enable consistent data acquisition in neonates? (2) Would quantitative objective metrics of ROP improve objectivity of ROP diagnosis and detect subclinical signs of disease progression which may enable earlier intervention and improved outcomes in the future. By leveraging our institution’s OCT, AI, and ROP expertise, we will address these questions in three specific aims: (1) Develop an ultra-high speed, handheld, panoramic ultra-widefield OCT/OCTA system. (2) Develop real time GPU accelerated intelligent image acquisition software. (3) Evaluate the clinical significance OCT derived biomarkers. Successful translation of this technology to the ROP population could improve the accuracy and objectivity of ROP diagnosis, and lead to earlier intervention and improved outcomes in patients with severe ROP.
项目概要 该项目的长期目标是确定光学相干断层扫描 (OCT) 和 OCT 是否 血管造影(OCTA)可能会带来更准确和客观的诊断、更早的干预并改善 早产儿视网膜病变(ROP)的结果。国际共识和美国国立卫生研究院 (NIH) 过去 30 年资助的临床试验定义了表型分类、自然史、预后、 和 ROP 管理。然而,众所周知,由于检眼镜检查的主观性 以及检查者之间的系统偏差,大多数人的治疗存在显着差异 现实世界中严重的 ROP 形式。这会导致治疗不足(以及由于视网膜疾病导致的不良结果) 脱离)和过度治疗(使新生儿面临治疗的眼部和全身风险)。大致 每年有 20,000 名婴儿因 ROP 发生视网膜脱离 (RD),有强有力的证据表明,大多数婴儿 这些都是可以预防的。在成人视网膜血管疾病中,尤其是糖尿病视网膜病变 (DR)、OCT 和 OCTA 可以检测和量化疾病特征,例如糖尿病黄斑水肿 (DME) 和视网膜新生血管形成 (NV) 在临床上注意到之前,可以进行早期治疗并降低 RD 导致失明的风险。 然而,评估该技术在新生儿中的使用需要高速和便携式技术,并且 商用手持式 OCT 对于超宽场 (UWF) OCT 和 OCTA 成像来说速度太慢。 几个小组(包括我们自己的小组)已经发表了使用原型 100 至 200 kHz 扫频的初步结果 源 (SS) OCT 系统,但由于缺乏固定,一致的数据采集仍然具有挑战性 以及清醒新生儿随后的运动,这限制了对潜在益处的评估 技术在这个人群中的应用。最近,人们对使用人工智能(AI)产生了浓厚的兴趣 (特别是深度学习),它依赖于高速图形处理单元(GPU)来提供实时 OCT 图像处理、分割和跟踪。该应用程序解决了 2 个基本差距 知识:(1)我们能否通过开发更快的超宽视场来克服技术挑战 查看 SS-OCT 系统与支持 GPU 的 DL 软件系统相结合,以实现一致的数据采集 新生儿? (2) ROP的定量客观指标能否提高ROP诊断和检测的客观性 疾病进展的亚临床迹象,这可能有助于早期干预并改善结果 未来。通过利用我们机构的 OCT、AI 和 ROP 专业知识,我们将通过三个方面解决这些问题 具体目标:(1)开发超高速、手持式、全景超宽视场OCT/OCTA系统。 (2) 开发实时GPU加速智能图像采集软件。 (3)评价临床意义 OCT 衍生的生物标志物。将该技术成功转化为 ROP 群体可以改善 ROP 诊断的准确性和客观性,并导致早期干预和改善患者的预后 患有严重的 ROP。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase-corrected buffer averaging for enhanced OCT angiography using FDML laser.
使用 FDML 激光对增强 OCT 血管造影进行相位校正缓冲平均。
  • DOI:
    10.1364/ol.430915
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Miao,Yusi;Siadati,Mahsa;Song,Jun;Ma,Da;Jian,Yifan;Beg,MirzaFaisal;Sarunic,MarinkoV;Ju,MyeongJin
  • 通讯作者:
    Ju,MyeongJin
Assessment of Retinopathy of Prematurity Regression and Reactivation Using an Artificial Intelligence-Based Vascular Severity Score.
  • DOI:
    10.1001/jamanetworkopen.2022.51512
  • 发表时间:
    2023-01-03
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Eilts, Sonja K.;Pfeil, Johanna M.;Poschkamp, Broder;Krohne, Tim U.;Eter, Nicole;Barth, Teresa;Guthoff, Rainer;Lagreze, Wolf;Grundel, Milena;Bruender, Marie-Christine;Busch, Martin;Kalpathy-Cramer, Jayashree;Chiang, Michael F.;Chan, R. V. Paul;Coyner, Aaron S.;Ostmo, Susan;Campbell, J. Peter;Stahl, Andreas
  • 通讯作者:
    Stahl, Andreas
Association of Optical Coherence Tomography-Measured Fibrovascular Ridge Thickness and Clinical Disease Stage in Retinopathy of Prematurity.
  • DOI:
    10.1001/jamaophthalmol.2022.4173
  • 发表时间:
    2022-10-13
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Nguyen, Thanh-Tin P.;Ni, Shuibin;Ostmo, Susan;Rajagopalan, Archeta;Coyner, Aaron S.;Woodward, Mani;Chiang, Michael F.;Jia, Yali;Huang, David;Campbell, J. Peter;Jian, Yifan
  • 通讯作者:
    Jian, Yifan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Peter Campbell其他文献

Influence of serial retinal images on the diagnosis and management of retinopathy of prematurity (ROP)
  • DOI:
    10.1016/j.jaapos.2018.07.216
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shin Hae Park;Kai Kang;Sang Jin Kim;Karyn Jonas;Susan Ostmo;John Peter Campbell;Michael F. Chiang;R.V. Paul Chan
  • 通讯作者:
    R.V. Paul Chan

John Peter Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Peter Campbell', 18)}}的其他基金

Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
  • 批准号:
    10760401
  • 财政年份:
    2023
  • 资助金额:
    $ 37.73万
  • 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
  • 批准号:
    10404639
  • 财政年份:
    2020
  • 资助金额:
    $ 37.73万
  • 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
  • 批准号:
    10198930
  • 财政年份:
    2020
  • 资助金额:
    $ 37.73万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    10431850
  • 财政年份:
    2010
  • 资助金额:
    $ 37.73万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    10620354
  • 财政年份:
    2010
  • 资助金额:
    $ 37.73万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    10206145
  • 财政年份:
    2010
  • 资助金额:
    $ 37.73万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    9974137
  • 财政年份:
    2010
  • 资助金额:
    $ 37.73万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.73万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了