Statistical methods for cancer genomics and cell-free DNA analysis
癌症基因组学和游离 DNA 分析的统计方法
基本信息
- 批准号:10413212
- 负责人:
- 金额:$ 34.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBayesian ModelingBenignBioinformaticsBiologicalBloodBlood CirculationCancer BiologyCancer DetectionCellsCessation of lifeCharacteristicsClassificationCollectionComplexComputer softwareDNADNA analysisDNA sequencingDataDatabasesDetectionDiploidyDisadvantagedDocumentationEarly treatmentExhibitsGenomeGenomicsGoalsHealth PolicyLeadLearningMalignant NeoplasmsMethodologyMethodsModelingMutationMutation DetectionNoisePerformancePlasmaPlasma CellsPositioning AttributeProcessPsychological reinforcementReproducibilitySamplingScreening for cancerSensitivity and SpecificitySignal TransductionSoftware ToolsStatistical MethodsStatistical ModelsStructureSurvival RateSystemTechniquesTechnologyTestingThe Cancer Genome AtlasTumor-DerivedWorkbasecancer cellcancer classificationcancer genomecancer genomicscancer typecell free DNAcell repositorycomplex datadriver mutationdynamic systemexperienceflexibilitygenome sequencinggenome-widehigh standardnovelopen sourcescreeningsignal processingsoftware developmentsoundtooltranscriptome sequencingtumortumor DNAuser-friendly
项目摘要
PROJECT SUMMARY/ABSTRACT
If detected early, many cancers can be successfully treated, leading to a high rate of survival. Unfortunately,
cancer is often detected only at late stages since current screening technologies have insufficient sensitiv-
ity and specificity at low tumor fractions. Further, screening itself is often invasive or even harmful, leading
health policy experts to recommend delaying or avoiding screening since the disadvantages may outweigh the
benefit. Cell-free DNA (cfDNA) sequencing presents an exciting recent possibility for highly accurate, non-
invasive cancer screening. When cells die, they often release small fragments of their DNA into the body,
and these cell-free DNA fragments temporarily circulate in the bloodstream. Thus, when cancer is present,
plasma obtained from routine blood draws contains DNA fragments from cancer cells. By performing genome
sequencing on this plasma cfDNA, it is possible to non-invasively detect and analyze cancers. However, ad-
vanced statistical methods are needed to extract the signal from the noise. The fraction of tumor-derived
cfDNA fragments is very small, on the order of 1/1000 or less for early stage cancers. The main objective
of the proposed project is to develop and test a flexible suite of statistical methods for cancer detection and
analysis using cfDNA sequencing data at low tumor fractions. Our central hypothesis is that structured prob-
abilistic models of genomic signals of cancer in cfDNA data, along with careful handling of errors and biases,
will enable cancer detection and classification with high sensitivity and specificity. (Aim 1) Develop robust non-
parametric Poisson regression framework, applied to mutational signatures. The mutational processes that
lead to cancer exhibit characteristic genome-wide signatures that are naturally modeled using nonnegative
matrix factorization (NMF). We generalize the Poisson NMF model to a nonparametric hierarchical Bayesian
regression model with priors informed by latent cancer type/subtype, covariates, known biological structure,
and large databases of cancer genomes. (Aim 2) Develop grammar-based methods for complex models of
sequential data, applied to SCNAs. Accurate genome-wide SCNA modeling requires continuous and dis-
crete latent states, asynchronous emissions, inhomogeneous transition kernels, and informed priors based on
previously observed cancer/normal genomes. We develop a grammar and algorithms for complex sequence
models with these features. (Aim3) Develop integrated Bayesian framework for robust cancer detection from
cfDNA sequencing. We will combine the methods from Aims 1 and 2 in a hierarchical model with cancer
type/subtype as a latent variable. (Aim 4) Develop software, provide documentation, and disseminate results
to facilitate reproducibility. We will provide user-friendly open-source software, preprocessed public data, and
thorough documentation to enable reproducibility and maximize ease-of-use.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Wayne Miller其他文献
Jeffrey Wayne Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Wayne Miller', 18)}}的其他基金
Statistical methods for cancer genomics and cell-free DNA analysis
癌症基因组学和游离 DNA 分析的统计方法
- 批准号:
10612900 - 财政年份:2020
- 资助金额:
$ 34.64万 - 项目类别:
Statistical methods for cancer genomics and cell-free DNA analysis
癌症基因组学和游离 DNA 分析的统计方法
- 批准号:
10247085 - 财政年份:2020
- 资助金额:
$ 34.64万 - 项目类别:
相似海外基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
- 批准号:
10730714 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2022
- 资助金额:
$ 34.64万 - 项目类别:
Discovery Grants Program - Individual
Bayesian modeling on ethical consumption and its empirical application for behavior modification
道德消费的贝叶斯模型及其在行为矫正中的实证应用
- 批准号:
21K18559 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10684720 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Discovery Grants Program - Individual
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10490301 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Bayesian Modeling of Mass-Spec Proteomics Data to Advance Studies of the Genetic Regulation of Proteins
质谱蛋白质组数据的贝叶斯建模推进蛋白质遗传调控的研究
- 批准号:
10391171 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2020
- 资助金额:
$ 34.64万 - 项目类别:
Discovery Grants Program - Individual