Data-Driven Learning Framework for Fast Quantitative Knee Joint Mapping
用于快速定量膝关节绘图的数据驱动学习框架
基本信息
- 批准号:10430275
- 负责人:
- 金额:$ 53.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAlgorithmsBiochemicalBiological ModelsCartilageChronicClinicalClinical ProtocolsCollagenCollagen FiberContrast MediaDataData SetDegenerative polyarthritisDetectionDiagnosticDiscriminationEarly DiagnosisElderlyEvaluationExtracellular MatrixExtracellular Matrix DegradationFutureGoalsHeterogeneityHumanHydration statusImageImaging TechniquesKneeKnee OsteoarthritisKnee jointLearningLifeMachine LearningMagnetic Resonance ImagingMapsMeniscus structure of jointMeta-AnalysisMethodsModelingModificationMorphologyMusculoskeletalPathologic ProcessesPatientsPatternPerformancePersonsPopulationProcessProteoglycanProtocols documentationRelaxationResearch PersonnelResolutionSamplingScanningScreening procedureSliceStructureT2 weighted imagingTechniquesTherapeutic AgentsThickThinnessTimeTissue EngineeringTissuesTranslatingValidationWaterarticular cartilagebasecartilage degradationcurative treatmentsdesigndisabilityearly screeningefficacy evaluationhealinghuman dataimprovedin vivolearning algorithmmacromoleculepreventreconstructionrepairedtoolwater environment
项目摘要
PROJECT SUMMARY
Osteoarthritis (OA), a leading cause of chronic disability in the elderly population, occurs with the degradation of
the extracellular matrix of articular cartilage, mainly composed of proteoglycan, collagen fibers, and water. Early
diagnosis of cartilage degeneration requires the detection of changes in proteoglycan concentration and collagen
integrity, preferably non-invasively and before any morphological changes occur. Spin-spin relaxation time (T2)
and spin-lattice relaxation time in the rotating frame (T1ρ) can provide quantitative information about the structure
and biochemical composition of the cartilage before morphological changes occur. Mono-exponential (ME)
models can characterize the T2 and T1ρ relaxation processes and map it for articular cartilage in the knee joint.
A recent meta-analysis showed that T1ρ provides more discrimination than T2 for OA. However, the ME model
alone cannot provide distinct information from different compartments of the cartilage. Recent studies have
shown that T1ρ relaxation might have bi-exponential (BE) components, following the hypothesis of the multi-
compartmental structure of the cartilage. BE T2 relaxation has shown better diagnostic performance than ME for
OA and can show the dispersion of the relaxation times, reflecting the heterogeneity in the macromolecular
environment of water in the cartilage. BE analysis of cartilage typically requires a larger number of acquisitions
with different spin-lock times (TSLs) or echo times (TEs), resulting in long scan time. High spatial resolution is
also needed to visualize the thin and curved cartilage and fine structures in the knee joint. As a result, in vivo
application of BE three-dimensional (3D) T1ρ and T2 mapping techniques is still very limited. Compressed sensing
(CS) combined with parallel imaging (PI) can accelerate acquisition and reduce the scan time required for ME
3D T1ρ and T2 mappings. T1ρ scans can be reduced from 30 min to ~3 min with an error smaller than 6.5%.
However, the error is two to three times larger for BE mapping. This problem can be potentially solved by
optimizing the sampling times (TSLs for T1ρ and TEs for T2) and the free parameters of the CS approach (k-
space sampling pattern, regularization function, regularization parameter, and minimization algorithm
parameters) using fully sampled 3D knee joint datasets, supported by machine learning tools. The overarching
goal of this proposal is to develop, optimize, and translate a high-spatial-resolution, rapid 3D magnetic resonance
imaging sequence using data-driven learning-based CS for assessment of the human knee joint and using ME
and BE 3D T1ρ (T2) mapping for improved biochemical characterization of cartilage and menisci on a standard
clinical 3T scanner.
项目总结
骨关节炎(OA)是老年人慢性残疾的主要原因之一,其发生的原因是关节退行性变
关节软骨的细胞外基质,主要由蛋白多糖、胶原纤维和水组成。早些时候
诊断软骨退变需要检测蛋白多糖浓度和胶原蛋白的变化
完整性,最好是非侵入性的,并在任何形态变化发生之前。自旋-自旋弛豫时间(T2)
旋转标架中的自旋-晶格弛豫时间(T1ρ)可以提供关于结构的定量信息
在形态发生变化之前,软骨的生物化学成分。单指数(ME)
模型可以表征T2和T1的ρ松弛过程,并将其映射到膝关节的关节软骨。
最近的一项荟萃分析表明,T1ρ比T2对OA的区分能力更强。然而,ME模式
单独从软骨的不同隔间提供不同的信息是不够的。最近的研究表明
结果表明,T1ρ弛豫可能具有双指数(BE)成分,遵循多指数(BE)的假设。
软骨的间隔性结构。BE T2弛豫显示出比ME更好的诊断性能
并能显示弛豫时间的离散性,反映了大分子中的不均一性
软骨中的水环境。对软骨的BE分析通常需要大量的采集
具有不同的自旋锁定时间(TSL)或回波时间(TES),导致较长的扫描时间。高空间分辨率是
还需要显示膝关节中薄而弯曲的软骨和精细结构。因此,在活体内
BE三维(3D)T1、ρ和T2标测技术的应用仍然非常有限。压缩感知
(CS)结合并行成像(PI)可以加快采集速度并减少ME所需的扫描时间
3D T1、ρ和T2映射。T1ρ扫描可从30分钟减少到~3分钟,误差小于6.5%。
然而,BE映射的误差要大两到三倍。这个问题有可能通过以下方式解决
优化CS方法的采样时间(T1ρ的TSLs和T2的TES)和自由参数(k-
空间采样模式、正则化函数、正则化参数和最小化算法
参数)使用完全采样的3D膝关节数据集,并由机器学习工具支持。最重要的是
这项提议的目标是开发、优化和转换高空间分辨率、快速3D磁共振
基于数据驱动学习的CS成像序列用于人体膝关节的评估
和BE 3DT1ρ(T2)标测用于改善标准上软骨和半月板的生化特征
临床3T扫描仪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravinder Regatte其他文献
Ravinder Regatte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravinder Regatte', 18)}}的其他基金
Multiparametric Mapping of Knee Joint with Magnetic Resonance Fingerprinting
膝关节磁共振指纹多参数绘图
- 批准号:
10541223 - 财政年份:2021
- 资助金额:
$ 53.44万 - 项目类别:
Multiparametric Mapping of Knee Joint with Magnetic Resonance Fingerprinting
膝关节磁共振指纹多参数绘图
- 批准号:
10115230 - 财政年份:2021
- 资助金额:
$ 53.44万 - 项目类别:
Data-Driven Learning Framework for Fast Quantitative Knee Joint Mapping
用于快速定量膝关节绘图的数据驱动学习框架
- 批准号:
10296235 - 财政年份:2021
- 资助金额:
$ 53.44万 - 项目类别:
Intervertebral Disc Mechanics with Functional GRASP-MRI
具有功能性 GRASP-MRI 的椎间盘力学
- 批准号:
10328260 - 财政年份:2021
- 资助金额:
$ 53.44万 - 项目类别:
Rapid Quantitative Assessment of Knee Joint with Compressed Sensing
利用压缩感知对膝关节进行快速定量评估
- 批准号:
10455507 - 财政年份:2020
- 资助金额:
$ 53.44万 - 项目类别:
Rapid Quantitative Assessment of Knee Joint with Compressed Sensing
利用压缩感知对膝关节进行快速定量评估
- 批准号:
10686034 - 财政年份:2020
- 资助金额:
$ 53.44万 - 项目类别:
Rapid Quantitative Assessment of Knee Joint with Compressed Sensing
利用压缩感知对膝关节进行快速定量评估
- 批准号:
10227958 - 财政年份:2020
- 资助金额:
$ 53.44万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 53.44万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 53.44万 - 项目类别:
Standard Grant














{{item.name}}会员




