Computational and Statistical Framework to Model Tissue Shape and Mechanics
组织形状和力学建模的计算和统计框架
基本信息
- 批准号:10471785
- 负责人:
- 金额:$ 56.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionAlgorithmsAnatomyArchitectureBone DensityCardiologyCartilageCharacteristicsChargeClinicalCommunitiesComputational TechniqueComputer ModelsComputer softwareComputing MethodologiesDataData SetDeformityDevelopmentDiagnosisDiseaseElementsFinite Element AnalysisFoundationsFundingGeometryGleanGroomingHip JointHip region structureHomeostasisHuman PathologyHuman bodyImageIndividualInjuryIntuitionLibrariesMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMedical ImagingMethodologyMethodsModelingMonitorMorphologyNeurologyOntologyOrthopedicsPathologyPatient imagingPatientsPerformancePhysiciansProceduresProcessPublishingQuantitative EvaluationsResearchResourcesSchemeShapesStructureSystemTechniquesTechnologyTestingTissue ModelTissuesTrainingValidationX-Ray Computed Tomographyannotation systembaseclinical applicationclinical practiceconvolutional neural networkcostdata modelingdisease diagnosisimprovedin vivomachine learning algorithmneural networknovelopen sourcepredictive modelingpreservationrepairedshape analysissimulationthree-dimensional modelingtool
项目摘要
PROJECT SUMMARY
The morphologic and mechanical characteristics of a tissue are fundamental to understanding the
development, homeostasis, and pathology of the human body. During the previous period of funding, we
developed statistical shape modeling (SSM) methods and applied these to the study of structural hip disease.
We also developed the initial framework to integrate SSM with finite element (FE) analysis to enable the study
of shape and mechanics together. If incorporated into clinical practice, SSM and FE analysis could identify
features of the anatomy likely responsible for injury, remodeling, or repair. Geometry needed for SSM and FE
models is typically generated by segmentation of volumetric imaging data. This step can be painstakingly slow,
error prone, and cost prohibitive, which hampers clinical application of these computational techniques. We
have created a deep machine learning algorithm ‘DeepSSM’ that uses a convolutional neural network to
establish the correspondence model directly from unsegmented images. In Aim 1 we will apply DepSSM to
improve clinical understanding of structural hip disease by characterizing differences in anatomy between
symptomatic and asymptomatic individuals; these morphometric comparisons will identify anatomic features
most telling of disease, thereby guiding improvements in diagnosis. Computational advancements have
simplified the process to generate patient-specific FE models, enabling clinically focused research. However,
there is no framework to collectively visualize, compare, and interpret (i.e., post-process) results from multiple
FE models. Currently, inter-subject comparisons require oversimplifications such as averaging results over
subjectively defined regions. In Aim 2 we will develop new post-processing methods to collectively visualize,
interpret and statistically analyze FE results across multiple subjects and study groups. We will map FE results
to synthetic anatomies representing statistically meaningful distributions using the correspondence model.
Statistical parametric mapping will be applied to preserve anatomic detail through statistical testing. We will
use our published FE models of hip joint mechanics as the test system. Finally, volumetric images provide a
wealth of information that is delivered to physicians in a familiar format. Yet, tools are not available to interpret
model data with clinical findings from volumetric images. In Aim 3, we will develop methods that evaluate
relationships between shape, mechanics, and clinical findings gleaned from imaging through integrated
statistical tests and semi-automatic medical image annotation tools that utilize standard ontologies.
Quantitative CT and MRI images of the hip, which estimate bone density and cartilage ultrastructure,
respectively, will be evaluated as test datasets. To impart broad impact, we will disseminate our methods to
the community as open source software that will call core functionality provided by existing, open source
software that has a large user base (FEBio, ShapeWorks).
项目总结
组织的形态和力学特征是理解
人体的发育、动态平衡和病理学。在上一次资助期间,我们
发展了统计形状建模(SSM)方法,并将其应用于结构性髋部疾病的研究。
我们还开发了将SSM与有限元(FE)分析相结合的初始框架,以使研究成为可能
形状和力学的结合。如果结合到临床实践中,SSM和FE分析可以确定
可能导致损伤、重塑或修复的解剖学特征。SSM和FE所需的几何图形
模型通常是通过分割体积成像数据来生成的。这一步可能会非常缓慢,
容易出错,成本高昂,这阻碍了这些计算技术的临床应用。我们
我创造了一种深度机器学习算法DeepSSM,它使用卷积神经网络来
直接从未分割的图像建立对应模型。在目标1中,我们将DepSSM应用于
通过区分结构性髋关节疾病在解剖学上的差异,提高临床对其认识
有症状和无症状的个体;这些形态测量比较将识别解剖特征
最能说明疾病的情况,从而指导诊断的改进。计算技术的进步已经
简化了生成患者特定FE模型的过程,从而实现了以临床为重点的研究。然而,
没有框架来统一可视化、比较和解释(即,后处理)来自多个
有限元模型。目前,主题间比较需要过度简化,例如对结果进行平均
主观定义的区域。在目标2中,我们将开发新的后处理方法来集体可视化,
解释并统计分析多个受试者和研究小组的FE结果。我们将映射FE结果
到使用对应模型表示统计上有意义的分布的合成解剖学。
将应用统计参数图通过统计测试来保存解剖细节。我们会
使用我们发布的髋关节力学有限元模型作为测试系统。最后,体积图像提供了一种
以熟悉的格式提供给医生的丰富信息。然而,还没有可用的工具来解释
模型数据与来自体积图像的临床发现。在目标3中,我们将开发评估方法
通过综合成像收集的形态、力学和临床表现之间的关系
使用标准本体的统计测试和半自动医学图像标注工具。
髋关节的定量CT和MRI图像,用于评估骨密度和软骨超微结构,
将分别作为测试数据集进行评估。为了产生广泛的影响,我们将传播我们的方法来
社区是开源软件,它将调用现有开源软件提供的核心功能
拥有庞大用户基础的软件(FEBio、ShapeWorks)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Edward Anderson其他文献
Andrew Edward Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Edward Anderson', 18)}}的其他基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 56.5万 - 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
- 批准号:
10437851 - 财政年份:2020
- 资助金额:
$ 56.5万 - 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
- 批准号:
10207471 - 财政年份:2020
- 资助金额:
$ 56.5万 - 项目类别:
Morphological and Biomechanical Insights into the Pathophysiology of Femoroacetabular Impingement Syndrome
股髋臼撞击综合征病理生理学的形态学和生物力学见解
- 批准号:
10032655 - 财政年份:2020
- 资助金额:
$ 56.5万 - 项目类别:
Quantifying the Pathophysiology of Femoroacetabular Impingement Syndrome
量化股髋臼撞击综合征的病理生理学
- 批准号:
9985290 - 财政年份:2019
- 资助金额:
$ 56.5万 - 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
- 批准号:
8892826 - 财政年份:2013
- 资助金额:
$ 56.5万 - 项目类别:
Computational and Statistical Framework to Model Tissue Shape and Mechanics
组织形状和力学建模的计算和统计框架
- 批准号:
10612478 - 财政年份:2013
- 资助金额:
$ 56.5万 - 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
- 批准号:
9113003 - 财政年份:2013
- 资助金额:
$ 56.5万 - 项目类别:
Musculoskeletal and Finite Element Modeling of Femoroacetabular Impingement
股骨髋臼撞击的肌肉骨骼和有限元建模
- 批准号:
8629695 - 财政年份:2013
- 资助金额:
$ 56.5万 - 项目类别:
Population-Based Shape and Biomechanical Analysis of Hip Pathoanatomy
基于人群的髋关节病理解剖形状和生物力学分析
- 批准号:
8595484 - 财政年份:2013
- 资助金额:
$ 56.5万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 56.5万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 56.5万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 56.5万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant














{{item.name}}会员




