Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data

估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据

基本信息

  • 批准号:
    10529069
  • 负责人:
  • 金额:
    $ 9.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Abstract Transdermal alcohol biosensors offer a promising method for unobtrusively collecting continuous alcohol levels in naturalistic settings over long periods of time. Devices are now available to reliably measure transdermal alcohol concentration (TAC), the amount of alcohol diffusing through the skin, but an often overlooked yet critical issue for making these biosensors valuable is that TAC does not consistently correlate with the easily interpretable measures of breath and blood alcohol concentrations (BrAC/BAC) across individuals, environmental conditions, and devices. The goal of this study is to produce software to convert TAC data into estimates of BrAC/BAC (eBrAC/eBAC). We will meet this goal by 1) developing mathematical models to produce quantitative eBrAC from TAC data, 2) examining alternative options for calibrating these models, 3) testing the model fits using varied types and amounts of very precise data, and 4) packaging the models into a comprehensive data assimilation software program. Specifically, we will enhance the fidelity of the models by integrating advanced physics/physiological-based models with statistical methods and data-driven machine- learning techniques. To reduce the burden currently required to calibrate the models for each individual, we will test a number of calibration procedures, including the replacement of the laboratory alcohol administration session with more varied drinking protocols as well as with population-based parameter estimates. We will test our models and protocols using detailed consumption data collected 1) on two of the investigators, 2) on 40 participants who will each participate in four controlled laboratory drinking sessions, and 3) on 40 participants who will each participate in a field trial and laboratory sessions. We will examine model fits across drinking patterns when using varying amounts of individualized alcohol data (e.g., breath analyzer, drink diary) to calibrate the models, and within and across individuals with differing characteristics (e.g., gender, weight) and under variable conditions (e.g., humidity, heart rate) that may affect model fit. We will create a data assimilation software system, the BrAC Estimator software, that incorporates all available data to produce the most accurate eBrAC measures. The software output will include the identification of drinking episodes, continuous eBrAC signal, and eBrAC summary scores (e.g., peak eBrAC, time of peak eBrAC, area under the drinking curve) with confidence bands. The software will be platform-portable to run alone or to be integrated into other mobile health technologies or precision medicine protocols. This proposal is innovative, technologically sophisticated, and feasible, and would result in the first tool to accomplish the TAC-eBrAC conversion, finally making it possible to obtain interpretable quantitative measurement of naturalistic alcohol consumption in the field. The anticipated result of this study is the expanded utility of TAC biosensors for researchers, clinicians, and individuals to monitor naturalistic alcohol consumption and easily understand the results.
摘要 透皮酒精生物传感器提供了一种有希望的方法,可以不引人注意地收集连续的酒精浓度。 长期处于自然主义的环境中。现在可以可靠地测量透皮吸收的设备 酒精浓度(TAC),酒精通过皮肤扩散的量,但经常被忽视 使这些生物传感器变得有价值的关键问题是,TAC与容易 可解释的个人呼吸和血液酒精浓度(BAC/BAC)的测量, 环境条件和设备。这项研究的目标是开发软件,将TAC数据转换为 BRAC/BAC的估算值(eBrAC/EBAC)。我们将通过1)开发数学模型来实现这一目标 从TAC数据生成定量的eBrAC,2)研究校准这些模型的替代选项,3) 使用各种类型和数量的非常精确的数据来测试模型的适用性,以及4)将模型打包到 综合数据同化软件程序。具体地说,我们将通过以下方式提高模型的保真度 将先进的基于物理/生理的模型与统计方法和数据驱动的机器相结合- 学习技巧。为了减轻目前为每个人校准模型所需的负担,我们将 测试一些校准程序,包括更换实验室的酒精管理 会议与更多不同的饮酒方案以及基于人口的参数估计。我们将测试 我们的模型和协议使用收集的详细消费数据1)两名调查人员,2)40名 参与者,每个人将参加四次受控的实验室饮酒会议,以及3)40名参与者 世卫组织将各自参加实地试验和实验室会议。我们将检查模特在饮酒时的合适性 使用不同量的个性化酒精数据(例如,呼吸分析仪、饮酒日记)时的模式 校准模型,以及具有不同特征(例如,性别、体重)的个人内部和之间的模型 在可能影响模型拟合的可变条件下(例如,湿度、心率)。我们将创建一个数据同化 软件系统,Brac Estimator软件,它整合了所有可用的数据,以产生最大 精确的eBrAC测量。软件输出将包括连续饮酒事件的识别 EBrAC信号和eBrAC总分(例如,eBrAC峰值、eBrAC峰值时间、饮酒面积 曲线)和置信度带。该软件将是平台可移植的,可以单独运行或集成到其他 移动医疗技术或精准医疗协议。这项提议在技术上是创新的 复杂、可行,最终将产生第一个完成TAC-eBrAC转换的工具 使其有可能获得可解释的定量测量的天然酒精消费在 菲尔德。这项研究的预期结果是扩大了TAC生物传感器的实用性,供研究人员、临床医生、 和个人监测自然饮酒并很容易理解结果。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUSAN E LUCZAK其他文献

SUSAN E LUCZAK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUSAN E LUCZAK', 18)}}的其他基金

Alcohol metabolism and disease risk in Asians: Examining the impact of personalized phenotypic/genotypic feedback and motivational processes on early drinking trajectories
亚洲人的酒精代谢和疾病风险:检查个性化表型/基因型反馈和动机过程对早期饮酒轨迹的影响
  • 批准号:
    10404917
  • 财政年份:
    2021
  • 资助金额:
    $ 9.49万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10402188
  • 财政年份:
    2018
  • 资助金额:
    $ 9.49万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10375443
  • 财政年份:
    2018
  • 资助金额:
    $ 9.49万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    9902264
  • 财政年份:
    2018
  • 资助金额:
    $ 9.49万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10132950
  • 财政年份:
    2018
  • 资助金额:
    $ 9.49万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8139849
  • 财政年份:
    2010
  • 资助金额:
    $ 9.49万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8316467
  • 财政年份:
    2010
  • 资助金额:
    $ 9.49万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8299391
  • 财政年份:
    2010
  • 资助金额:
    $ 9.49万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8496652
  • 财政年份:
    2010
  • 资助金额:
    $ 9.49万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    7988003
  • 财政年份:
    2010
  • 资助金额:
    $ 9.49万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 9.49万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了