Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
基本信息
- 批准号:10375443
- 负责人:
- 金额:$ 49.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlcohol consumptionAlcoholsAreaArea Under CurveAssimilationsBacterial Artificial ChromosomesBiosensorBlood alcohol level measurementCalibrationCharacteristicsClinicalCommunitiesComputer softwareConcentration measurementConsumptionDataDevelopmentDevicesDiffuseEnvironmental Risk FactorFeedbackGalvanic Skin ResponseGenderGeneral PopulationGoalsHealthHealth TechnologyHeart RateHumidityIndividualIndividual DifferencesInterventionLaboratoriesLinear ModelsLocationMachine LearningMeasurementMeasuresMethodologyMethodsModelingMonitorNational Institute on Alcohol Abuse and AlcoholismOutcomeOutputParticipantPatternPhysicsPhysiologicalPlug-inPopulationPreventionProceduresProcessProtocols documentationReadingResearchResearch PersonnelResolutionRunningSeriesSignal TransductionSkinStatistical MethodsStatistical ModelsSystemTechniquesTechnologyTemperatureTestingTimeUncertaintyWeightWorkalcohol measurementalcohol researchalcohol responsealcoholism therapybasebreath alcohol measurementdata reductiondiariesdrinkingdrinking behaviorimprovedinnovationmHealthmathematical methodsmathematical modelphysiologic modelpopulation basedportabilityprecision medicineprogramssensorsoftware systemssupervised learningtime intervaltime usetoolunsupervised learning
项目摘要
Abstract
Transdermal alcohol biosensors offer a promising method for unobtrusively collecting continuous alcohol levels
in naturalistic settings over long periods of time. Devices are now available to reliably measure transdermal
alcohol concentration (TAC), the amount of alcohol diffusing through the skin, but an often overlooked yet
critical issue for making these biosensors valuable is that TAC does not consistently correlate with the easily
interpretable measures of breath and blood alcohol concentrations (BrAC/BAC) across individuals,
environmental conditions, and devices. The goal of this study is to produce software to convert TAC data into
estimates of BrAC/BAC (eBrAC/eBAC). We will meet this goal by 1) developing mathematical models to
produce quantitative eBrAC from TAC data, 2) examining alternative options for calibrating these models, 3)
testing the model fits using varied types and amounts of very precise data, and 4) packaging the models into a
comprehensive data assimilation software program. Specifically, we will enhance the fidelity of the models by
integrating advanced physics/physiological-based models with statistical methods and data-driven machine-
learning techniques. To reduce the burden currently required to calibrate the models for each individual, we will
test a number of calibration procedures, including the replacement of the laboratory alcohol administration
session with more varied drinking protocols as well as with population-based parameter estimates. We will test
our models and protocols using detailed consumption data collected 1) on two of the investigators, 2) on 40
participants who will each participate in four controlled laboratory drinking sessions, and 3) on 40 participants
who will each participate in a field trial and laboratory sessions. We will examine model fits across drinking
patterns when using varying amounts of individualized alcohol data (e.g., breath analyzer, drink diary) to
calibrate the models, and within and across individuals with differing characteristics (e.g., gender, weight) and
under variable conditions (e.g., humidity, heart rate) that may affect model fit. We will create a data assimilation
software system, the BrAC Estimator software, that incorporates all available data to produce the most
accurate eBrAC measures. The software output will include the identification of drinking episodes, continuous
eBrAC signal, and eBrAC summary scores (e.g., peak eBrAC, time of peak eBrAC, area under the drinking
curve) with confidence bands. The software will be platform-portable to run alone or to be integrated into other
mobile health technologies or precision medicine protocols. This proposal is innovative, technologically
sophisticated, and feasible, and would result in the first tool to accomplish the TAC-eBrAC conversion, finally
making it possible to obtain interpretable quantitative measurement of naturalistic alcohol consumption in the
field. The anticipated result of this study is the expanded utility of TAC biosensors for researchers, clinicians,
and individuals to monitor naturalistic alcohol consumption and easily understand the results.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN E LUCZAK其他文献
SUSAN E LUCZAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN E LUCZAK', 18)}}的其他基金
Alcohol metabolism and disease risk in Asians: Examining the impact of personalized phenotypic/genotypic feedback and motivational processes on early drinking trajectories
亚洲人的酒精代谢和疾病风险:检查个性化表型/基因型反馈和动机过程对早期饮酒轨迹的影响
- 批准号:
10404917 - 财政年份:2021
- 资助金额:
$ 49.39万 - 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
- 批准号:
10402188 - 财政年份:2018
- 资助金额:
$ 49.39万 - 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
- 批准号:
10529069 - 财政年份:2018
- 资助金额:
$ 49.39万 - 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
- 批准号:
9902264 - 财政年份:2018
- 资助金额:
$ 49.39万 - 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
- 批准号:
10132950 - 财政年份:2018
- 资助金额:
$ 49.39万 - 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
- 批准号:
8139849 - 财政年份:2010
- 资助金额:
$ 49.39万 - 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
- 批准号:
8316467 - 财政年份:2010
- 资助金额:
$ 49.39万 - 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
- 批准号:
8299391 - 财政年份:2010
- 资助金额:
$ 49.39万 - 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
- 批准号:
8496652 - 财政年份:2010
- 资助金额:
$ 49.39万 - 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
- 批准号:
7988003 - 财政年份:2010
- 资助金额:
$ 49.39万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 49.39万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 49.39万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 49.39万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 49.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists