Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data

估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据

基本信息

  • 批准号:
    10132950
  • 负责人:
  • 金额:
    $ 50.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Abstract Transdermal alcohol biosensors offer a promising method for unobtrusively collecting continuous alcohol levels in naturalistic settings over long periods of time. Devices are now available to reliably measure transdermal alcohol concentration (TAC), the amount of alcohol diffusing through the skin, but an often overlooked yet critical issue for making these biosensors valuable is that TAC does not consistently correlate with the easily interpretable measures of breath and blood alcohol concentrations (BrAC/BAC) across individuals, environmental conditions, and devices. The goal of this study is to produce software to convert TAC data into estimates of BrAC/BAC (eBrAC/eBAC). We will meet this goal by 1) developing mathematical models to produce quantitative eBrAC from TAC data, 2) examining alternative options for calibrating these models, 3) testing the model fits using varied types and amounts of very precise data, and 4) packaging the models into a comprehensive data assimilation software program. Specifically, we will enhance the fidelity of the models by integrating advanced physics/physiological-based models with statistical methods and data-driven machine- learning techniques. To reduce the burden currently required to calibrate the models for each individual, we will test a number of calibration procedures, including the replacement of the laboratory alcohol administration session with more varied drinking protocols as well as with population-based parameter estimates. We will test our models and protocols using detailed consumption data collected 1) on two of the investigators, 2) on 40 participants who will each participate in four controlled laboratory drinking sessions, and 3) on 40 participants who will each participate in a field trial and laboratory sessions. We will examine model fits across drinking patterns when using varying amounts of individualized alcohol data (e.g., breath analyzer, drink diary) to calibrate the models, and within and across individuals with differing characteristics (e.g., gender, weight) and under variable conditions (e.g., humidity, heart rate) that may affect model fit. We will create a data assimilation software system, the BrAC Estimator software, that incorporates all available data to produce the most accurate eBrAC measures. The software output will include the identification of drinking episodes, continuous eBrAC signal, and eBrAC summary scores (e.g., peak eBrAC, time of peak eBrAC, area under the drinking curve) with confidence bands. The software will be platform-portable to run alone or to be integrated into other mobile health technologies or precision medicine protocols. This proposal is innovative, technologically sophisticated, and feasible, and would result in the first tool to accomplish the TAC-eBrAC conversion, finally making it possible to obtain interpretable quantitative measurement of naturalistic alcohol consumption in the field. The anticipated result of this study is the expanded utility of TAC biosensors for researchers, clinicians, and individuals to monitor naturalistic alcohol consumption and easily understand the results.
摘要 透皮酒精生物传感器提供了一种有前途的方法,不引人注目地收集连续的酒精水平 在自然环境中长期存在。现在有设备可以可靠地测量经皮 酒精浓度(TAC),通过皮肤扩散的酒精量,但经常被忽视, 使这些生物传感器有价值的关键问题是,TAC并不总是与生物传感器的易变性相关。 个体之间呼吸和血液酒精浓度(BrAC/BAC)的可解释测量, 环境条件和设备。本研究的目标是制作软件,将TAC数据转换为 BrAC/BAC(eBrAC/eBAC)。我们将通过以下方式实现这一目标:1)开发数学模型, 从TAC数据中产生定量的eBrAC,2)研究校准这些模型的替代方案,3) 使用不同类型和数量的非常精确的数据来测试模型拟合,以及4)将模型打包成 综合资料同化软件程序。具体而言,我们将通过以下方式提高模型的逼真度: 将先进的物理/生理模型与统计方法和数据驱动的机器相结合, 学习技巧为了减轻目前为每个人校准模型的负担,我们将 测试一些校准程序,包括更换实验室酒精管理 会议与更多不同的饮用协议,以及与人口为基础的参数估计。我们将测试 我们的模型和协议使用详细的消费数据收集1)在两个调查人员,2)在40 每个参与者将参加四个受控的实验室饮酒会议,以及3)40名参与者 他们将分别参加田间试验和实验室会议。我们将研究不同饮酒量的模型拟合 当使用不同量的个体化酒精数据时的模式(例如,呼吸分析仪、饮料日记), 校准模型,并且在具有不同特征的个体内和个体之间(例如,性别、体重)和 在可变条件下(例如,湿度、心率),这可能会影响模型拟合。我们将创建一个数据同化 软件系统,BrAC Estimate软件,它结合了所有可用的数据, 准确的EBRAC测量。软件输出将包括饮酒事件的识别、连续的 eBrAC信号和eBrAC汇总评分(例如,eBrAC峰值、eBrAC峰值时间、饮水下面积 曲线)与置信带。该软件将是平台可移植的,可以单独运行或集成到其他 移动的医疗技术或精确医疗协议。这项提案在技术上是创新的, 先进,可行,并将导致第一个工具来完成TAC-eBrAC转换,最后 使得有可能获得自然酒精消费的可解释的定量测量, 领域这项研究的预期结果是扩大了TAC生物传感器对研究人员,临床医生, 和个人监测自然酒精消费和容易理解的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUSAN E LUCZAK其他文献

SUSAN E LUCZAK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUSAN E LUCZAK', 18)}}的其他基金

Alcohol metabolism and disease risk in Asians: Examining the impact of personalized phenotypic/genotypic feedback and motivational processes on early drinking trajectories
亚洲人的酒精代谢和疾病风险:检查个性化表型/基因型反馈和动机过程对早期饮酒轨迹的影响
  • 批准号:
    10404917
  • 财政年份:
    2021
  • 资助金额:
    $ 50.09万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10402188
  • 财政年份:
    2018
  • 资助金额:
    $ 50.09万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10375443
  • 财政年份:
    2018
  • 资助金额:
    $ 50.09万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10529069
  • 财政年份:
    2018
  • 资助金额:
    $ 50.09万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    9902264
  • 财政年份:
    2018
  • 资助金额:
    $ 50.09万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8139849
  • 财政年份:
    2010
  • 资助金额:
    $ 50.09万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8316467
  • 财政年份:
    2010
  • 资助金额:
    $ 50.09万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8299391
  • 财政年份:
    2010
  • 资助金额:
    $ 50.09万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    8496652
  • 财政年份:
    2010
  • 资助金额:
    $ 50.09万
  • 项目类别:
Intergenerational Transmission of Alcohol Involvement
酒精参与的代际传播
  • 批准号:
    7988003
  • 财政年份:
    2010
  • 资助金额:
    $ 50.09万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 50.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了