Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10596283
- 负责人:
- 金额:$ 17.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-04-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcademyAccelerationAddressAdverse effectsAnimalsAwarenessBasic ScienceBiometryChemicalsCollaborationsCommon Data ElementCommunitiesComplexComputational ScienceConsensusDataData AnalysesData Coordinating CenterData ScienceData ScientistData SetDepositionDevelopmentDisciplineDocumentationE-learningEducational workshopElectronicsEnsureEnvironmentEnvironmental HealthEnvironmental ScienceFormulationFosteringGoalsGrantHazardous ChemicalsHazardous SubstancesInformation ResourcesInfrastructureInterdisciplinary StudyKentuckyKnowledgeKnowledge DiscoveryLife Cycle StagesMetadataMethodsNational Institute of Environmental Health SciencesOnline SystemsOntologyOutcomePlanet EarthPopulationProblem SolvingProcessProtocols documentationPublic HealthQuality ControlRegistriesReproducibilityResearchResearch PersonnelResearch Project GrantsResearch SupportResource SharingResourcesRiskScienceScientistSecureSeriesSiteSuperfundTechnologyTerminologyTestingToxic effectTrainingTranslational ResearchUniversitiesValidationWorkapplication programming interfacebiomedical informaticscommunity engagementdashboarddata archivedata dictionarydata ecosystemdata integrationdata managementdata qualitydata resourcedata sharingdata standardsdata toolsdesignexperienceexperimental studyimprovedinnovationinteroperabilityinvestigator-initiated translational researchmeetingsmembernutritionprogramsquality assuranceremediationrepositorysuperfund chemicalsymposiumtooltraining opportunitytraining projectwebinar
项目摘要
PROJECT SUMMARY
The University of Kentucky Superfund Research Center (UK-SRC) Data Management and Analysis Core
(DMAC) has a goal to provide an overarching technology and research support infrastructure for the
management and integration of data and information assets. Given that interdisciplinary research requires
researchers to use methods and data from a range of disciplines, this goal addresses a critical need for
interdisciplinary research to overcome hurdles posed by discipline-specific methods that impede progress
when many disciplines attempt to share data. The DMAC is designed in alignment with FAIR (Findable,
Assessable, Interoperable, and Reusable) data principles to encourage interaction of data users and sharing of
data. The specific aims are: 1) coordination of projects and cores; 2) foster data integration, sharing, and
interoperability; 3) ensure data quality assurance and quality control (QA/QC). The datasets to be managed
and curated within the DMAC, encompass the full range of basic research to translational work, from animal-
based studies to chemical analysis, from experimental studies evaluating remediation of hazardous
substances to community engagement activities. The DMAC will engage regularly with project/core leaders to
prioritize data sets. It will streamline analytic resources, data management, data quality validation, and data
integration across projects and cores to improve efficiencies and reproducibility, enhance project coordination,
and promote resource sharing. The DMAC will promote interoperability by incorporating FAIR guiding
principles in its data dashboards, data archives, and its query exploration interface to permit projects and cores
to better integrate. By developing common terminologies, data dictionaries, training, etc., the DMAC will
facilitate a common data resource to foster sharing within, and beyond the UK-SRC. To facilitate interaction
with investigators and trainees there will be (on-site and electronic) opportunities for regular interaction with
biostatisticians, data scientists, and informaticians where formal and informal training can occur. These
activities will be coordinated and advertised closely with the Research Experience Training Coordination Core
(RETCC). The DMAC will create a new WHY ENVIRONMENT module to enable projects and cores to engage
in investigator-initiated research translation activities to allow them to form new questions and hypotheses that
can be tested in projects and cores and shared beyond the confines of UK-SRC. Lastly, the DMAC will
incorporate best practices outlined by Data Observation Network for Earth (DataONE.org). It will establish a
plan for data QA/QC so that UK-SRC research will not be subjected to pitfalls associated with poor quality
data.
项目摘要
肯塔基州大学超级基金研究中心(UK-SRC)数据管理和分析核心
(DMAC)的目标是提供一个总体技术和研究支持基础设施,
数据和信息资产的管理和集成。鉴于跨学科研究需要
研究人员使用来自一系列学科的方法和数据,这一目标解决了以下关键需求:
跨学科研究,以克服阻碍进展的特定学科方法所带来的障碍
当许多学科试图共享数据时。DMAC的设计与FAIR(Findable,
可评估、可互操作和可重复使用)数据原则,以鼓励数据使用者之间的互动,
数据具体目标是:1)项目和核心的协调; 2)促进数据集成,共享,
互操作性; 3)确保数据质量保证和质量控制(QA/QC)。要管理的数据集
并在DMAC内策划,涵盖基础研究到转化工作的全方位,从动物-
从评估有害物质补救的实验研究到化学分析,
社区参与活动。DMAC将定期与项目/核心领导人接触,
优先考虑数据集。它将简化分析资源、数据管理、数据质量验证和数据
跨项目和核心的集成,以提高效率和可重复性,增强项目协调,
促进资源共享。DMAC将通过纳入FAIR指南来促进互操作性
数据仪表板、数据存档及其查询探索界面中的原则,
更好地融合。通过制定共同术语、数据词典、培训等,DMAC将
促进共同的数据资源,以促进英国SRC内外的共享。促进互动
与调查人员和受训人员将有机会(现场和电子)与
生物统计学家,数据科学家和信息学家,可以进行正式和非正式培训。这些
活动将与研究经验培训协调核心密切协调和宣传
(RETCC)。DMAC将创建一个新的“为什么环境”模块,以使项目和核心能够参与
在研究者发起的研究翻译活动中,使他们能够形成新的问题和假设,
可以在项目和核心中进行测试,并在UK-SRC范围之外共享。最后,DMAC将
纳入地球数据观测网络(DataONE.org)概述的最佳做法。将建立
制定数据质量保证/质量控制计划,以便UK-SRC研究不会遇到与质量差相关的陷阱
数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly G Pennell其他文献
Kelly G Pennell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly G Pennell', 18)}}的其他基金
KC Donnelly Externship Admin Supplement for Victoria Klaus P42ES007380 UKSRC
KC Donnelly 维多利亚·克劳斯 (Victoria Klaus) 实习管理补充资料 P42ES007380 UKSRC
- 批准号:
10795313 - 财政年份:2023
- 资助金额:
$ 17.33万 - 项目类别:
K.C. Donnelly Externship Admin Supplement for Erin Molly Frazar P42ES007380 UKSRC
K.C.
- 批准号:
10381267 - 财政年份:2021
- 资助金额:
$ 17.33万 - 项目类别:
KC Donnelly Externship Admin Supplement for Ariel Robinson P42ES007380 UKSRC
KC Donnelly Ariel Robinson 实习管理补充资料 P42ES007380 UKSRC
- 批准号:
10455119 - 财政年份:1997
- 资助金额:
$ 17.33万 - 项目类别:
Fate and Transport of Contaminants in Aging Piping Systems
老化管道系统中污染物的归宿和迁移
- 批准号:
10596289 - 财政年份:1997
- 资助金额:
$ 17.33万 - 项目类别:
UK NIEHS SRP Project # 3 Supplement Relating to Extending Halo-organic Capture/Remediation Technology to Corona Virus Membrane Mask and Enclosed Space Air Filter Development
英国NIEHS SRP项目
- 批准号:
10272657 - 财政年份:1997
- 资助金额:
$ 17.33万 - 项目类别:
KC Donnelly Externship Admin Supplement for Francisco Leniz P42ES007380 UKSRC
KC Donnelly 弗朗西斯科·莱尼兹 (Francisco Leniz) 实习管理补充 P42ES007380 UKSRC
- 批准号:
10580946 - 财政年份:1997
- 资助金额:
$ 17.33万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 17.33万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 17.33万 - 项目类别:
Standard Grant