STATISTICAL ANALYSIS OF EVENT RELATED POTENTIALS
事件相关潜力的统计分析
基本信息
- 批准号:2839189
- 负责人:
- 金额:$ 11.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-12-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The millisecond time resolution of event-related potentials (ERPs) gives
them a unique advantage in studying brain function, but ERP research is
seriously limited by the lack of statistical methods to address the
complexity and variability of ERP data. In this project, we will develop
a new statistical approach to decomposition of ERP waveforms, analysis
of the sources of variability, and estimation of the effects of
experimental conditions and disease states. We will evaluate the new
methods using simulated ERPs and many animal and human ERP data sets,
including ERPs acquired from schizophrenic and stroke patients who also
were studied using structural magnetic resonance imaging (MRI).
The new statistical methods will combine time series modeling using the
wavelet transform with nonlinear mixed effects models. Wavelet analysis
decomposes ERPs by time and frequency. We have already validated our
wavelet models in applications to simulated data, cat auditory evoked
potentials, and human P300 potentials. Wavelet analysis separated
superimposed components, yielding realistic condition effects and
topographies, even in difficult cases in which principal components
analysis failed.
Our nonlinear mixed effects models will provide a parsimonious
representation of the variability among individuals (human subjects or
experimental animals) and single trials (responses to single stimulus
presentations). They will yield valid significance tests and confidence
intervals, extending familiar linear statistical procedures to
complicated nonlinear time series.
The specific aims of this project are to develop, evaluate, and apply the
following statistical methods.
1. The Single Channel Wavelet Model will separate superimposed
components in single channel average ERPs, and yield significance tests
for condition effects on the amplitude and latency of each component.
2. The Topographic Wavelet Model will extend the single channel wavelet
model to multichannel data, and provide estimated of the topography of
each component. Regularization of the topography will allow analysis of
ERPs from dense electrode arrays.
3. The Trial-Specific Wavelet Model will extend the single channel
wavelet model to include both inter-individual and inter-trial
variability, allowing estimation of the relationships among ERP
components and between ERP components and trial-specific variables such
as reaction time and subjective intensity.
事件相关电位(ERP)的毫秒时间分辨率给出了
它们在研究大脑功能方面具有独特的优势,但ERP研究
由于缺乏统计方法来处理
ERP数据的复杂性和可变性。在这个项目中,我们将开发
一种新的ERP波形分解统计方法,
的影响的估计
实验条件和疾病状态。我们将评估新的
方法使用模拟ERP和许多动物和人类ERP数据集,
包括从精神分裂症和中风患者获得的ERP,
使用结构磁共振成像(MRI)进行了研究。
新的统计方法将结合联合收割机时间序列建模,
小波变换与非线性混合效应模型小波分析
根据时间和频率分解ERP。我们已经验证了我们的
小波模型在模拟数据中的应用,猫听觉诱发
人的P300电位。小波分析分离
叠加组件,产生逼真的条件效果,
拓扑,即使在困难的情况下,其中主成分
分析失败。
我们的非线性混合效应模型将提供一个简约的
个体(人类受试者或
实验动物)和单一试验(对单一刺激的反应
介绍)。它们将产生有效的显著性检验和信心
区间,扩展熟悉的线性统计程序,
复杂非线性时间序列
该项目的具体目标是开发、评估和应用
根据统计方法。
1. 单通道小波模型将叠加的
单通道平均ERP中的成分,并进行产量显著性检验
条件对每个分量的振幅和潜伏期的影响。
2. 地形子波模型是对单通道子波的扩展
对多通道数据进行建模,并提供
每个组件。地形的规则化将允许分析
来自密集电极阵列的ERP。
3. 特定于试验的小波模型将扩展单通道
小波模型包括个体间和试验间
可变性,允许估计ERP之间的关系
ERP组件和试验特定变量之间的差异,例如
反应时间和主观强度。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A wavelet packet model of evoked potentials.
诱发电位的小波包模型。
- DOI:10.1006/brln.1998.2025
- 发表时间:1999
- 期刊:
- 影响因子:0
- 作者:Raz,J;Dickerson,L;Turetsky,B
- 通讯作者:Turetsky,B
Intra-hemispheric alpha coherence decreases with increasing cognitive impairment in HIV patients.
HIV 患者的半球内 α 相干性随着认知障碍的增加而降低。
- DOI:10.1016/s0013-4694(96)96071-x
- 发表时间:1997
- 期刊:
- 影响因子:0
- 作者:Fletcher,DJ;Raz,J;Fein,G
- 通讯作者:Fein,G
Reproducibility of visual activation in functional MR imaging and effects of postprocessing.
功能性 MR 成像中视觉激活的再现性和后处理的效果。
- DOI:
- 发表时间:2000
- 期刊:
- 影响因子:0
- 作者:Miki,A;Raz,J;vanErp,TG;Liu,CS;Haselgrove,JC;Liu,GT
- 通讯作者:Liu,GT
Functional magnetic resonance imaging of lateral geniculate nucleus at 1.5 tesla.
1.5 特斯拉外侧膝状核的功能磁共振成像。
- DOI:
- 发表时间:2000
- 期刊:
- 影响因子:0
- 作者:Miki,A;Raz,J;Haselgrove,JC;vanErp,TG;Liu,CS;Liu,GT
- 通讯作者:Liu,GT
Reproducibility of visual activation in functional magnetic resonance imaging at very high field strength (4 Tesla).
功能性磁共振成像在极高场强(4 特斯拉)下视觉激活的再现性。
- DOI:10.1016/s0021-5155(00)00304-x
- 发表时间:2001
- 期刊:
- 影响因子:2.4
- 作者:Miki,A;Raz,J;Englander,SA;Butler,NS;vanErp,TG;Haselgrove,JC;Liu,GT
- 通讯作者:Liu,GT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RODERICK J. LITTLE其他文献
RODERICK J. LITTLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RODERICK J. LITTLE', 18)}}的其他基金
Estimation of Disclosure Risk and Statistical Methods for Disclosure Limitations
披露风险的估计和披露限制的统计方法
- 批准号:
7004015 - 财政年份:2004
- 资助金额:
$ 11.14万 - 项目类别:
STATISTICAL METHODOLOGY FOR MENTAL HEALTH RESEARCH
心理健康研究的统计方法
- 批准号:
3376075 - 财政年份:1982
- 资助金额:
$ 11.14万 - 项目类别:
STATISTICAL METHODOLOGY FOR MENTAL HEALTH RESEARCH
心理健康研究的统计方法
- 批准号:
3376080 - 财政年份:1982
- 资助金额:
$ 11.14万 - 项目类别:
STATISTICAL METHODOLOGY FOR MENTAL HEALTH RESEARCH
心理健康研究的统计方法
- 批准号:
2244525 - 财政年份:1982
- 资助金额:
$ 11.14万 - 项目类别:
相似海外基金
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
10746499 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
International Conference on Cognitive Computational Neuroscience, 2023
认知计算神经科学国际会议,2023
- 批准号:
BB/X018350/1 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Research Grant
Undergraduate and Graduate Training in Computational Neuroscience and Data Analysis
计算神经科学和数据分析的本科生和研究生培训
- 批准号:
10879351 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
10879289 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Undergraduate and Graduate Training in Computational Neuroscience and Data Analysis
计算神经科学和数据分析的本科生和研究生培训
- 批准号:
10746527 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Computational Neuroscience
计算神经科学
- 批准号:
CRC-2018-00162 - 财政年份:2022
- 资助金额:
$ 11.14万 - 项目类别:
Canada Research Chairs
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 11.14万 - 项目类别:
Standard Grant
Decoding sleeping brain activity: Integrating experiments and computational neuroscience to elucidate the cognitive benefit of sleep
解码睡眠大脑活动:结合实验和计算神经科学来阐明睡眠的认知益处
- 批准号:
RGPIN-2020-06342 - 财政年份:2022
- 资助金额:
$ 11.14万 - 项目类别:
Discovery Grants Program - Individual
Computational Neuroscience and Cognitive Neuroimaging
计算神经科学和认知神经影像
- 批准号:
CRC-2018-00174 - 财政年份:2022
- 资助金额:
$ 11.14万 - 项目类别:
Canada Research Chairs