STATISTICAL METHODOLOGY FOR MENTAL HEALTH RESEARCH
心理健康研究的统计方法
基本信息
- 批准号:3376080
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1982
- 资助国家:美国
- 起止时间:1982-09-28 至 1992-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern mental health studies often result in large complicated data
sets. In particular, longitudinal studies that follow individuals over
time measure a variety of variables at each time point, yielding data
that are often complicated by the presence of missing values or
attrition from the sample. Survey data to detect the incidence and
prevalence of depression involve lengthy questionnaires to measure
mental disorders, and often are analyzed by methods that ignore
complexities in the sample design.
The effort and expense required to assemble these data sets is
considerable, so it seems prudent to analyze them using the best methods
available. However, often the analysis is confined to relatively basic
statistical methods. Our objectives are to develop statistical methods
for efficient and appropriate analysis of mental health data, and to
make these methods accessible to other researchers.
One of the most common problems facing NIMH researchers is the analysis
of unbalanced repeated measures data. Data with this structure are
often treated by inefficient and inappropriate methods, and state of the
art methods, although an improvement, are usually based on assumptions
that may not be appropriate for mental health outcomes. Statistical
tests are largely based on large-sample theory, which is inappropriate
for the small data sets that are often collected in NIMH studies. We
propose to tackle these two problems, and to develop further the class
of useful repeated measures models for NIMH data.
A second focus of our research concerns the analysis of mental health
surveys, with emphasis on nonresponse adjustments. Problems of outliers
and missing data are often a significant reason why survey data are left
incompletely analyzed. We propose to develop missing-data adjustments
that improve considerably on naive methods of imputation, or methods
that simply discard the incomplete cases. Our methods will build on the
recently developed methodology of multiple imputation, and on the common
technique of weighting adjustment for unit nonresponse.
现代心理健康研究往往产生大量复杂的数据
集. 特别是,跟踪个人的纵向研究
时间测量每个时间点的各种变量,产生数据
通常由于存在缺失值而变得复杂,
从样品中提取。 调查数据,以查明发病率,
抑郁症的流行涉及冗长的问卷调查,
精神障碍,并且经常被忽视的方法分析,
样品设计的复杂性。
收集这些数据集所需的工作量和费用是
相当大,因此使用最佳方法分析它们似乎是明智的
available. 然而,分析往往局限于相对基本的
统计方法 我们的目标是发展统计方法
对心理健康数据进行有效和适当的分析,
让其他研究人员也能使用这些方法。
NIMH研究人员面临的最常见问题之一是分析
不平衡的重复测量数据。 具有此结构的数据是
经常以低效和不适当的方法治疗,
艺术方法虽然是一种改进,但通常是基于假设的
可能不适合心理健康结果。 统计
测试主要基于大样本理论,这是不合适的
对于NIMH研究中经常收集的小数据集。 我们
我建议解决这两个问题,并进一步发展班级。
NIMH数据的有用重复测量模型。
我们研究的第二个重点是关于心理健康的分析
调查,重点是无答复调整。 离群值问题
而缺失数据往往是调查数据被留下的重要原因
不完全分析。 我们建议开发缺失数据调整
大大改进了简单的估算方法,
简单地丢弃不完整的案例。 我们的方法将建立在
最近开发的多重插补方法,以及
单位无响应的加权调整技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RODERICK J. LITTLE其他文献
RODERICK J. LITTLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RODERICK J. LITTLE', 18)}}的其他基金
Estimation of Disclosure Risk and Statistical Methods for Disclosure Limitations
披露风险的估计和披露限制的统计方法
- 批准号:
7004015 - 财政年份:2004
- 资助金额:
$ 24.91万 - 项目类别:
STATISTICAL METHODOLOGY FOR MENTAL HEALTH RESEARCH
心理健康研究的统计方法
- 批准号:
3376075 - 财政年份:1982
- 资助金额:
$ 24.91万 - 项目类别:
STATISTICAL METHODOLOGY FOR MENTAL HEALTH RESEARCH
心理健康研究的统计方法
- 批准号:
2244525 - 财政年份:1982
- 资助金额:
$ 24.91万 - 项目类别:
相似海外基金
Towards more complete models and improved computer simulation tools for Liquid Composite Molding (LCM)
为液体复合成型 (LCM) 打造更完整的模型和改进的计算机模拟工具
- 批准号:
RGPIN-2022-04495 - 财政年份:2022
- 资助金额:
$ 24.91万 - 项目类别:
Discovery Grants Program - Individual
Computer simulation of yeast metabolism by data-driven ensemble modeling
通过数据驱动的集成建模对酵母代谢进行计算机模拟
- 批准号:
22H01879 - 财政年份:2022
- 资助金额:
$ 24.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computer simulation studies of crystallization in structured ternary fluids
结构三元流体结晶的计算机模拟研究
- 批准号:
2717178 - 财政年份:2022
- 资助金额:
$ 24.91万 - 项目类别:
Studentship
Computer simulation of confined polymers and 2D catenated-ring networks
受限聚合物和二维链环网络的计算机模拟
- 批准号:
RGPIN-2022-03086 - 财政年份:2022
- 资助金额:
$ 24.91万 - 项目类别:
Discovery Grants Program - Individual
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
- 批准号:
22K03579 - 财政年份:2022
- 资助金额:
$ 24.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving cardiac valve implant outcomes with advanced computer simulation
通过先进的计算机模拟改善心脏瓣膜植入效果
- 批准号:
nhmrc : 2002892 - 财政年份:2021
- 资助金额:
$ 24.91万 - 项目类别:
Ideas Grants
Aggregation process of amyloid-beta peptides on a membrane on a lipid membrane studied by computer simulation
计算机模拟研究淀粉样β肽在脂膜上的聚集过程
- 批准号:
21K06040 - 财政年份:2021
- 资助金额:
$ 24.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer simulation of cell polarization and migration in 3D
3D 细胞极化和迁移的计算机模拟
- 批准号:
563522-2021 - 财政年份:2021
- 资助金额:
$ 24.91万 - 项目类别:
University Undergraduate Student Research Awards
Computer Simulation of a Semiflexible Polymer Confined to a Dual-Nanocavity Geometry
限制在双纳米腔几何结构中的半柔性聚合物的计算机模拟
- 批准号:
563544-2021 - 财政年份:2021
- 资助金额:
$ 24.91万 - 项目类别:
University Undergraduate Student Research Awards
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
- 批准号:
10550022 - 财政年份:2021
- 资助金额:
$ 24.91万 - 项目类别:














{{item.name}}会员




