Physiological systems integration in the optimisation of exercise tolerance

优化运动耐力中的生理系统整合

基本信息

  • 批准号:
    BB/I00162X/1
  • 负责人:
  • 金额:
    $ 27.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The ability to sustain muscular exercise is a key determinant of health, quality of life, and mortality. A low tolerance for exercise contributes to a downward spiral of inactivity, which is debilitating in the elderly and an actual cause of many chronic diseases. Therefore, a better understanding of the mechanisms that allow exercise to be sustained is central to our ability to help maintain health, quality of life and promote longevity. Sustaining muscular exercise depends on the body's ability to provide energy through 'oxidative', or aerobic, pathways. These are chemical reactions that synthesise energy through the consumption of oxygen. However, bodily stores of oxygen are very limited so at exercise onset the lungs, heart and muscles must respond in a coordinated fashion to transport oxygen from the atmosphere to where it is used in the active muscles. In healthy individuals the required increases in pulmonary ventilation, cardiac output, muscle blood flow, and muscle oxygen utilisation occur in a well coordinated fashion. However, to achieve this coordination the responses of these systems lag behind the energy demands by about 3 minutes in normal healthy subjects. The kinetics with which oxygen transport and utilisation can respond therefore determines whether or not the body is able meet the energy demands through oxidative pathways. Because demands for activity fluctuate throughout the day (e.g. walking, stair climbing, etc), the response kinetics of energy providing pathways have a significant impact on the ability to carry out the tasks of daily living. It is of considerable concern, therefore, that these response kinetics are very slow in the elderly, and take about twice as long to reach their requirement compared to young individuals. In the elderly therefore there is a greater high reliance on alternative routes of energy provision (termed anaerobic, because they don't consume oxygen). These are detrimental to exercise tolerance because they are related to increased muscle fatigue, shortness of breath and pain. It is perhaps unsurprising, therefore, that physiological systems respond very rapidly in trained athletes. The mechanisms that determine the integrated responses of the pulmonary, circulatory and muscular systems, however, are currently unresolved. The studies in this proposal aim to improve our understanding of the interactions between oxygen delivery to, and utilisation in, the active muscles during the transition from rest to exercise. A better understanding of how these processes work will improve our ability to address the slow oxygen consumption kinetics in the elderly, as well as the optimisation of these processes in elite athletes. The experiments for these studies are organised into three tracks: 1) studies to elucidate how the kinetics of muscle fatigue and oxygen uptake contribute to limiting exercise tolerance in young, elderly and endurance trained subjects; 2) studies to elucidate how rates of aerobic and anaerobic energy provision are distributed throughout the active muscles; and 3) studies to generate a computer model to simulate energy provision and integrated physiological systems integration during exercise over a variety of conditions. All the experiments are made using non-invasive measurements during leg exercise in young (<30 years), elderly (>65 years) or elite endurance trained athletes (volunteers from the Great Britain cycling squad). The outcomes of this project will improve our understanding of how the body responds to the energy demands of physical activity, and how the provision and utilisation of oxygen is optimised to allow high work rates to be sustained. These studies will therefore underpin the development of new strategies (either pharmacological or exercise based) for ameliorating the mechanisms limiting exercise tolerance in humans, and thereby contribute to the maintenance of health, quality of life, and longevity.
维持肌肉锻炼的能力是健康、生活质量和死亡率的关键决定因素。对运动的低耐受性会导致缺乏运动的螺旋式下降,这会使老年人身体虚弱,也是许多慢性病的实际原因。因此,更好地了解使运动得以持续的机制,对于我们帮助保持健康、生活质量和延长寿命的能力至关重要。持续的肌肉锻炼依赖于身体通过“氧化”或有氧途径提供能量的能力。这些化学反应通过消耗氧气来合成能量。然而,身体储存的氧气非常有限,因此在运动开始时,肺、心脏和肌肉必须以协调的方式做出反应,将氧气从大气输送到活跃的肌肉中使用的地方。在健康的个体中,肺通气量、心输出量、肌肉血流量和肌肉氧利用率的必要增加是以一种协调的方式发生的。然而,为了实现这种协调,这些系统的反应落后于正常健康受试者的能量需求约3分钟。因此,氧气运输和利用的动力学决定了人体是否能够通过氧化途径满足能量需求。由于运动需求在一天中是波动的(如步行、爬楼梯等),能量提供途径的反应动力学对执行日常生活任务的能力有重大影响。因此,令人相当关注的是,老年人的这些反应动力学非常缓慢,与年轻人相比,需要大约两倍的时间才能达到他们的要求。因此,老年人对替代能量供应途径的依赖程度更高(被称为厌氧,因为他们不消耗氧气)。这些都不利于运动耐力,因为它们与增加肌肉疲劳、呼吸急促和疼痛有关。因此,在训练有素的运动员身上,生理系统的反应非常迅速,这或许并不令人惊讶。然而,决定肺、循环和肌肉系统综合反应的机制目前尚未解决。这项建议中的研究旨在提高我们对从休息到运动的过渡过程中向活跃肌肉输送氧气和利用活跃肌肉之间的相互作用的理解。更好地了解这些过程是如何工作的,将提高我们解决老年人缓慢耗氧动力学问题的能力,以及优化精英运动员的这些过程。这些研究的实验分为三个方面:1)研究阐明肌肉疲劳和氧气摄取的动力学如何有助于年轻人、老年人和耐力训练的受试者限制运动耐量;2)研究阐明有氧和无氧能量供应的速率如何分布在活跃的肌肉中;3)研究生成计算机模型来模拟在各种条件下运动时的能量供应和综合生理系统整合。所有实验都是在年轻(30岁)、老年(65岁)或受过耐力训练的精英运动员(来自英国自行车队的志愿者)进行腿部锻炼时使用非侵入性测量进行的。这个项目的成果将提高我们对身体如何对体力活动的能量需求做出反应,以及如何优化氧气的供应和利用以维持高工作效率的理解。因此,这些研究将为开发新的策略(无论是基于药理学的还是基于运动的)奠定基础,以改善人类运动耐量的限制机制,从而有助于维持健康、生活质量和长寿。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A validated and optimised model linking muscle and pulmonary oxygen uptake kinetics
连接肌肉和肺吸氧动力学的经过验证和优化的模型
An algorithm to optimise fitting of phase 2 pulmonary oxygen uptake kinetics from breath-by-breath measurements
一种优化每次呼吸测量中第 2 相肺摄氧动力学拟合的算法
Optimising Oxygen Uptake Kinetic Fitting Methods in Healthy Humans Ranging in Anatomical and Physiological Characteristics 366 Board #204 May 28, 11
优化健康人体的摄氧动力学拟合方法(包括解剖学和生理学特征) 366 Board
The Spatial Distribution of Absolute Skeletal Muscle Deoxygenation During Ramp-Incremental Exercise Is Not Influenced by Hypoxia
  • DOI:
    10.1007/978-1-4939-3023-4_2
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bowen, T. Scott;Koga, Shunsaku;Rossiter, Harry B.
  • 通讯作者:
    Rossiter, Harry B.
Optimising and validating a computational model of the influence of circulatory dynamics on VO2 kinetics.
优化和验证循环动力学对 VO2 动力学影响的计算模型。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harry Rossiter其他文献

BREATH BY BREATH DEAD SPACE TO TIDAL VOLUME RATIO CALCULATION USING VOLUMETRIC CAPNOGRAPHY DURING EXERCISE TO ASSESS THE EFFECT OF GLYCOPYRROLATE/FORMOTEROL VS PLACEBO ON GAS EXCHANGE EFFICIENCY IN COPD
  • DOI:
    10.1016/j.chest.2019.08.232
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    William Stringer;Michael von Plato;Richard Casaburi;Harry Rossiter;Shahid Siddiqui;Stephen Rennard;Janos Porszasz
  • 通讯作者:
    Janos Porszasz
A CARDIOMETABOLIC RESERVE IN HEART FAILURE, REVEALED BY VERIFICATION PHASE EXERCISE TESTING, DOES NOT CONFER PROGNOSTIC BENEFIT
  • DOI:
    10.1016/j.chest.2020.08.1780
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Theresa Yang;Scott Bowen;Jack Garnham;Al Benson;Sam Straw;Richard Cubbon;John Gierula;Wanda Macdonald;Melanie McGinlay;Ben Hylton;Dong Chang;Klaus Witte;Harry Rossiter
  • 通讯作者:
    Harry Rossiter
Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function: the COPDGene Study.
肺动脉修剪和肺气肿百分比和肺功能的纵向变化:COPD基因研究。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    C. Pistenmaa;P. Nardelli;S. Ash;C. E. Come;A. Díaz;F. Rahaghi;R. Barr;K. Young;G. Kinney;J. P. Simmons;R. Wade;Wells Jn;J. Hokanson;G. Washko;R. San José Estépar;J. Crapo;E. Silverman;B. Make;E. Regan;Terri H. Beaty;P. Castaldi;M. Cho;D. Demeo;A. El Boueiz;M. Foreman;Auyon J. Ghosh;L. Hayden;C. Hersh;J. Hetmanski;B. Hobbs;J. Hokanson;Wonji Kim;N. Laird;C. Lange;S. Lutz;Merry;D. Prokopenko;M. Moll;J. Morrow;D. Qiao;A. Saferali;P. Sakornsakolpat;E. Wan;J. Yun;J. P. Centeno;J. Charbonnier;H. Coxson;C. Galbán;M. Han;E. Hoffman;S. Humphries;F. Jacobson;P. Judy;E. Kazerooni;A. Kluiber;D. Lynch;P. Nardelli;J. Newell;A. Notary;A. Oh;J. Ross;R. San José Estépar;Joyce D. Schroeder;J. Sieren;B. Stoel;J. Tschirren;E. V. van Beek;B. Ginneken;E. V. van Rikxoort;Gonzalo Vegas Sanchez;Lucas Veitel;G. Washko;C. Wilson;R. Jensen;D. Everett;J. Crooks;K. Pratte;M. Strand;E. Austin;G. Kinney;K. Young;S. Bhatt;J. Bon;A. Díaz;B. Make;S. Murray;E. Regan;Xavier Soler;R. Bowler;K. Kechris;F. Banaei;J. Curtis;P. Pernicano;N. Hanania;Mustafa A. Atik;A. Boriek;K. Guntupalli;E. Guy;A. Parulekar;C. Hersh;G. Washko;R. Barr;J. Austin;B. D’souza;B. Thomashow;N. MacIntyre;H. McAdams;L. Washington;C. Mcevoy;J. Tashjian;R. Wise;R. Brown;N. Hansel;Karen Horton;A. Lambert;N. Putcha;R. Casaburi;A. Adami;M. Budoff;Hans Fischer;J. Porszasz;Harry Rossiter;W. Stringer;A. Sharafkhaneh;Charlie Lan;Christine Wendt;B. Bell;K. Kunisaki;E. Flenaugh;H. Gebrekristos;Mario Ponce;Silanath Terpenning;G. Westney;Russell P Bowler;R. Rosiello;D. Pace;G. Criner;D. Ciccolella;F. Cordova;C. Dass;G. D'Alonzo;P. Desai;Michael Jacobs;S. Kelsen;V. Kim;A. Mamary;N. Marchetti;A. Satti;K. Shenoy;R. Steiner;A. Swift;I. Swift;M. Vega‐Sanchez;M. Dransfield;William C. Bailey;A. Iyer;H. Nath;Wells Jn;D. Conrad;A. Yen;A. Comellas;K. Hoth;J. Newell;Brad Thompson;E. Kazerooni;W. Labaki;C. Galbán;D. Vummidi;J. Billings;A. Begnaud;T. Allen;F. Sciurba;D. Chandra;J. Weissfeld
  • 通讯作者:
    J. Weissfeld

Harry Rossiter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harry Rossiter', 18)}}的其他基金

The Systems Biology of Exercise
运动的系统生物学
  • 批准号:
    BB/I024798/1
  • 财政年份:
    2011
  • 资助金额:
    $ 27.08万
  • 项目类别:
    Research Grant
Cardiovascular and intramuscular interactions in the control of skeletal muscle O2 consumption kinetics
心血管和肌肉内相互作用在控制骨骼肌耗氧动力学中的作用
  • 批准号:
    BB/F019521/1
  • 财政年份:
    2009
  • 资助金额:
    $ 27.08万
  • 项目类别:
    Research Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
  • 批准号:
    60572117
  • 批准年份:
    2005
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似海外基金

Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
  • 批准号:
    10675428
  • 财政年份:
    2022
  • 资助金额:
    $ 27.08万
  • 项目类别:
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
  • 批准号:
    10291003
  • 财政年份:
    2022
  • 资助金额:
    $ 27.08万
  • 项目类别:
Role of serotonergic IL-1R1 in modulating physiological and behavioral responses to peripheral inflammation
血清素能 IL-1R1 在调节外周炎症生理和行为反应中的作用
  • 批准号:
    10267673
  • 财政年份:
    2020
  • 资助金额:
    $ 27.08万
  • 项目类别:
Role of serotonergic IL-1R1 in modulating physiological and behavioral responses to peripheral inflammation
血清素能 IL-1R1 在调节外周炎症生理和行为反应中的作用
  • 批准号:
    10402912
  • 财政年份:
    2020
  • 资助金额:
    $ 27.08万
  • 项目类别:
The Functional Neuroanatomy of the Human Physiological Stress Response
人类生理应激反应的功能神经解剖学
  • 批准号:
    10609821
  • 财政年份:
    2019
  • 资助金额:
    $ 27.08万
  • 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
  • 批准号:
    10330420
  • 财政年份:
    2019
  • 资助金额:
    $ 27.08万
  • 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
  • 批准号:
    10589931
  • 财政年份:
    2019
  • 资助金额:
    $ 27.08万
  • 项目类别:
BiVACOR - A Physiological, Durable and Blood-Friendly Total Artificial Heart
BiVACOR - 生理、耐用且血液友好的全人工心脏
  • 批准号:
    10620855
  • 财政年份:
    2017
  • 资助金额:
    $ 27.08万
  • 项目类别:
BiVACOR - A Physiological, Durable and Blood-Friendly Total Artificial Heart
BiVACOR - 生理、耐用且血液友好的全人工心脏
  • 批准号:
    10402886
  • 财政年份:
    2017
  • 资助金额:
    $ 27.08万
  • 项目类别:
BiVACOR - A Physiological, Durable and Blood-Friendly Total Artificial Heart
BiVACOR - 生理、耐用且血液友好的全人工心脏
  • 批准号:
    10214075
  • 财政年份:
    2017
  • 资助金额:
    $ 27.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了