Process Intensification for Acceleration of Bio & Chemo Catalysis in Biorefining

生物加速过程强化

基本信息

  • 批准号:
    BB/I005498/1
  • 负责人:
  • 金额:
    $ 0.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Biorefineries take as their feedstock materials from sustainable sources and ideally from non-food competitive sources. These materials are converted into valuable materials which may be used directly in products such as emollients for skin care creams or flavour and fragrances. Alternatively they may in turn be a raw material for a subsequent process which produces more complex products such as a monomer used for production of polyurethanes. However the existing process technologies have been designed for petrochemical based feedstocks. Such processes and the associated equipment have been refined over decades to be optimal for these chemistries and materials. Even when new technologies become available the cost of scrapping old process facilities and replacing them with new equipment may make it economically unattractive. Since the biorefinery industry is still developing there is a significant opportunity to introduce new and innovative processes and process equipment before long term capital investments are irrevocably made. The project seeks to evaluate one such extremely novel proprietary mixing technology which is already producing technology patents in adjacent industry sectors but has not to date been considered in biorefining. Many operations in biorefineries involve using water-insoluble materials. This means that there are solid particles (eg plant material) or droplets of liquids (eg oil) in the reaction mixture. Problems arise because the catalysts or reagents needed to convert the insoluble materials to products have to be dissolved in the water. Therefore, the reactions have to take place at the interface between the solid or oil and the water. In such reactions the intimate mixing of the feedstock and the catalysts is crucial to rapid conversion. We have developed a new type of mixing process that can vastly increase the surface area of the feedstock by producing smaller drops and particles. We aim to demonstrate the opportunities of such a novel combination of chemistry, biology and engineering through a focussed feasibility study with two example systems. In the first system we look at the degradation of waste lignin from biorefineries and the lignin present in biomass by commonly available enzymes. Lignocellulosic biomass as exemplified by wood, straw etc. is the single biggest source of sustainable organic materials. However the lignin fraction of this biomass is resistant to all but the most aggressive of chemical treatments and, whilst enzymes are responsible for the degradation of lignin in nature, they are much too slow for commercial processes. Nevertheless, lignin is one of the few sources of aromatic compounds in renewable feedstocks, and these are important industrial products. Therefore, a commercially viable route to lignin degradation would be extremely attractive to industry. In the second system we aim to take plant oils from biorefinery feedstock and, rather than converting them all to biodiesel, our goal is to oxidise them to more valuable intermediate feedstocks, such as materials used to prepare plastics. Thus we partly replace plastics made from oil with plastics made from plants,while also generating opportunities for new industries associated with the biorefinery. For both examples the conversions will be achieved in water without the aid of any of the additional chemicals which are traditionally introduced to overcome processing problems or to condition raw materials to make them easier to work with. Therefore, the mixer will simplify the processes and reduce waste, and also decrease energy consumption through the elimination of extra processing steps associated with separation and purification. As all of these things add to the cost of producing a chemical and may produce pollution, successful integration of the chemistry, biology and engineering will yield cleaner products from renewable resources, offering potential business opportunities.
生物精炼厂从可持续来源,最好是从非食品竞争性来源获取原料。这些材料被转化成有价值的材料,其可以直接用于产品,例如用于皮肤护理霜或调味剂和香料的润肤剂。或者,它们又可以是用于后续工艺的原料,所述后续工艺生产更复杂的产物,例如用于生产聚氨酯的单体。然而,现有的工艺技术是针对基于石油化学的原料设计的。几十年来,这些工艺和相关设备一直在改进,以优化这些化学品和材料。即使有了新的技术,报废旧的加工设施并以新设备取代的费用也可能使其在经济上没有吸引力。由于生物炼制行业仍在发展,因此在进行长期资本投资之前,引入新的和创新的工艺和工艺设备是一个重要的机会。该项目旨在评估一种这样的极其新颖的专有混合技术,该技术已经在邻近的工业部门获得技术专利,但迄今尚未被考虑用于生物精炼。生物炼制中的许多操作涉及使用不溶于水的材料。这意味着在反应混合物中存在固体颗粒(例如植物材料)或液体液滴(例如油)。因为将不溶性材料转化为产物所需的催化剂或试剂必须溶解在水中,所以出现了问题。因此,反应必须发生在固体或油与水之间的界面处。在这样的反应中,原料和催化剂的紧密混合对于快速转化是至关重要的。我们开发了一种新型的混合工艺,可以通过产生更小的液滴和颗粒来大大增加原料的表面积。我们的目标是通过两个示例系统的集中可行性研究来展示这种化学,生物学和工程学的新组合的机会。在第一个系统中,我们研究了生物炼制中的废木质素和生物质中存在的木质素通过常用酶的降解。以木材、稻草等为例的木质纤维素生物质是可持续有机材料的单一最大来源。然而,这种生物质的木质素部分对除了最具侵略性的化学处理之外的所有化学处理都有抗性,并且虽然酶在自然界中负责木质素的降解,但它们对于商业过程来说太慢了。然而,木质素是可再生原料中芳香族化合物的少数来源之一,并且这些是重要的工业产品。因此,一种商业上可行的木质素降解途径将对工业极具吸引力。在第二个系统中,我们的目标是从生物炼制原料中提取植物油,而不是将它们全部转化为生物柴油,我们的目标是将它们氧化为更有价值的中间原料,例如用于制备塑料的材料。因此,我们用植物制成的塑料部分取代了石油制成的塑料,同时也为与生物炼制相关的新行业创造了机会。对于这两个实施例,转化将在水中实现,而不需要任何额外的化学品的帮助,这些化学品传统上被引入以克服加工问题或调节原料以使它们更容易处理。因此,混合器将简化工艺并减少浪费,并且还通过消除与分离和纯化相关的额外处理步骤来降低能耗。由于所有这些都增加了生产化学品的成本,并可能产生污染,化学,生物和工程的成功整合将从可再生资源中产生更清洁的产品,提供潜在的商业机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gillian Stephens其他文献

Gillian Stephens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gillian Stephens', 18)}}的其他基金

14TSB_SynBio P2P: Pentoses to products
14TSB_SynBio P2P:戊糖到产品
  • 批准号:
    BB/M005518/1
  • 财政年份:
    2015
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Research Grant
13TSB_CRD: HIGH PRODUCTIVITY HOMOFERMENTATIVE PROCESS for BUTANOL (HIPHOP)
13TSB_CRD:丁醇的高产均质发酵工艺 (HIPHOP)
  • 批准号:
    BB/L011492/1
  • 财政年份:
    2013
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Research Grant
Development of a Commercially Viable Itaconic Acid Fermentation Process
开发商业上可行的衣康酸发酵工艺
  • 批准号:
    BB/I016562/1
  • 财政年份:
    2011
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Training Grant
Research Development Fellowship. Towards biorefineries based on wastes: efficient enzymatic lignin degradation
研究发展奖学金。
  • 批准号:
    BB/G023581/2
  • 财政年份:
    2010
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Fellowship
Research Development Fellowship. Towards biorefineries based on wastes: efficient enzymatic lignin degradation
研究发展奖学金。
  • 批准号:
    BB/G023581/1
  • 财政年份:
    2009
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Fellowship
Engineering the convergence of chemistry and biology: resolving the incompatibility of bio- and chemical catalysis
工程化学与生物学的融合:解决生物催化和化学催化的不相容性
  • 批准号:
    EP/E010687/1
  • 财政年份:
    2006
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Research Grant
Novel biocatalytic reductions for synthesis of chiral amines
用于合成手性胺的新型生物催化还原
  • 批准号:
    BB/D002826/1
  • 财政年份:
    2006
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Research Grant

相似海外基金

Levelling up: Cultured meat bioprocess intensification for scalable commercial production
升级:培养肉生物加工强化以实现可扩展的商业生产
  • 批准号:
    10083870
  • 财政年份:
    2024
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Collaborative R&D
Intensification of metallo-enzyme production to unlock sustainable biocatalytic hydrogenation
强化金属酶生产以实现可持续的生物催化氢化
  • 批准号:
    10065700
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Collaborative R&D
CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
  • 批准号:
    2245474
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Standard Grant
COntinental COnvective OrganisatioN and rainfall intensification in a warming world: Improving storm predictions from hours to decades (COCOON)
变暖世界中的大陆对流组织和降雨强度:将风暴预测从几小时提高到几十年(COCOON)
  • 批准号:
    NE/X017419/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Fellowship
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
  • 批准号:
    23K13592
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Uncovering the Role of Land-Atmosphere Feedbacks on Flash Drought Intensification, Severity, and Expansion
合作研究:揭示陆地-大气反馈对突发干旱加剧、严重程度和扩大的作用
  • 批准号:
    2303458
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role Of Climate In Agricultural Intensification And Settlement Trends
合作研究:气候在农业集约化和定居趋势中的作用
  • 批准号:
    2414237
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the Role of Land-Atmosphere Feedbacks on Flash Drought Intensification, Severity, and Expansion
合作研究:揭示陆地-大气反馈对突发干旱加剧、严重程度和扩大的作用
  • 批准号:
    2303457
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Standard Grant
MICA: Pulmonary Hypertension: intensification and personalisation of combination Rx (PHoenix)
MICA:肺动脉高压:联合 Rx 的强化和个性化 (PHoenix)
  • 批准号:
    MR/W026279/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.73万
  • 项目类别:
    Research Grant
Transcriptional adaptations driving the intensification of alcohol-seeking in dependent rats undergoing prolonged abstinence
转录适应导致长期戒酒的依赖性大鼠对酒精的渴求加剧
  • 批准号:
    10540014
  • 财政年份:
    2022
  • 资助金额:
    $ 0.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了