Genome Organisation for Optimising Synthetic Secondary Metabolism

用于优化合成次级代谢的基因组组织

基本信息

  • 批准号:
    BB/K006290/1
  • 负责人:
  • 金额:
    $ 43.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will research genome organisation and in particular how changing the location and arrangement of metabolic enzyme genes within a yeast genome can alter the amount of the metabolite they produce, in this case the antibiotic penicillin. Antibiotics are just one class of complex chemicals that the diverse array of organisms on Earth has naturally evolved to produce. The production of chemicals by life is known as metabolism and the more complex high-value chemicals that specialist cells produce (e.g. in plants) are called secondary metabolites and these include most therapeutic molecules known today. Production of secondary metabolites in cells requires specific enzymes which are encoded by genes usually under strict control (regulation). As our understanding of biology improves through many fundamental research breakthroughs, scientists are now looking to re-engineer secondary metabolism to produce valuable compounds in cellular systems that are easy to work with. Microbes like brewer's yeast are perfect as they are easy to culture and so could cheaply produce high yields of valuable compounds from renewable resources like sugar.The most promising way to perform this 'metabolic engineering' is to use what is known as a synthetic biology approach, where genes and their controllers are treated as modular components with well-defined behaviours and then combined in a rational design-based manner. So far the synthetic biology approach to metabolic engineering has been successful in producing compounds useful as anti-malarials, cosmetics and biofuels by taking genes for enzymes found in plants and exotic microbes and combining these inside industrially-used microbes such as yeast. Crucial for achieving high yields of production in these microbes is fine-control over the precise levels of enzymes in each cell.One method of tuning enzyme levels that is currently unexplored by scientists is how the genes for these enzymes are physically arranged within a cell's genome. It is already known that gene location and orientation within a genome plays an important role in gene expression in all forms of life. Recently, it has also been established that in cells that naturally perform secondary metabolism, such as plant cells, the location of genes that make up a pathway is often tightly conserved, usually in occurring in gene 'clusters' in areas known as 'sub-telomeric regions'. Clearly, if nature and evolution are correct, then the location of where pathway genes are added to a genome must affect the enzyme levels and therefore the pathway output.This project seeks to test the hypothesis that modifying pathway gene location within a genome can result in improved yields of a high-value secondary metabolite, in this case penicillin. The genes encoding the penicillin pathway will be added to the genome of a lab yeast strain and cells will be selected that produce the greatest amounts of penicillin. The amount produced will then be monitored in a series of experiments where the pathway genes are systematically rearranged around five different places in the genome. This will give valuable information on how the arrangement of genes in the genome affects the pathway. Finally, the pathway genes will be placed in an engineered lab strain specifically designed to shuffle parts of its genome when under an evolutionary pressure. The strain will be grown to compete against bacteria and in doing will automatically rearrange pathway genes to produce the most penicillin. This project will therefore provide an important new synthetic biology approach to metabolic engineering, and also uncover valuable new information on the fundamental science of genomes and genome evolution.
该项目将研究基因组组织,特别是如何改变酵母基因组中代谢酶基因的位置和排列可以改变它们产生的代谢物的量,在这种情况下,抗生素青霉素。抗生素只是地球上各种生物自然进化产生的一类复杂化学物质。由生命产生的化学物质被称为代谢,而专门细胞产生的更复杂的高价值化学物质(例如在植物中)被称为次级代谢物,这些包括今天已知的大多数治疗分子。细胞中次级代谢产物的产生需要特定的酶,这些酶通常由严格控制(调节)的基因编码。随着我们对生物学的理解通过许多基础研究突破而得到改善,科学家们现在正在寻求重新设计次级代谢,以在细胞系统中产生易于使用的有价值的化合物。像啤酒酵母这样的微生物是完美的,因为它们易于培养,因此可以从糖等可再生资源中廉价地生产高产量的有价值的化合物。执行这种“代谢工程”最有希望的方法是使用所谓的合成生物学方法,其中基因及其控制器被视为具有明确定义的行为的模块化组件,然后以基于合理设计的方式组合。到目前为止,代谢工程的合成生物学方法已经成功地生产出抗疟疾药、化妆品和生物燃料等化合物,方法是提取植物和外来微生物中发现的酶的基因,并将这些基因结合到酵母等工业微生物中。在这些微生物中实现高产的关键是对每个细胞中酶的精确水平进行精细控制。目前科学家尚未探索的一种调节酶水平的方法是这些酶的基因在细胞基因组中的物理排列。众所周知,基因组中的基因定位和方向在所有生命形式的基因表达中起着重要作用。最近,还已经确定,在天然进行次级代谢的细胞(例如植物细胞)中,构成途径的基因的位置通常是紧密保守的,通常发生在被称为“亚端粒区域”的区域中的基因“簇”中。显然,如果自然和进化是正确的,那么路径基因添加到基因组中的位置一定会影响酶的水平,从而影响路径的输出。本项目旨在测试这样一种假设,即改变基因组中路径基因的位置可以提高高价值次级代谢产物的产量,在这种情况下,青霉素。编码青霉素途径的基因将被添加到实验室酵母菌株的基因组中,并选择产生最多青霉素的细胞。然后将在一系列实验中监测产生的数量,其中途径基因在基因组中的五个不同位置周围系统地重排。这将为基因组中基因的排列如何影响该途径提供有价值的信息。最后,这些途径基因将被放置在一种经过工程改造的实验室菌株中,这种菌株是专门设计的,可以在进化压力下改变其基因组的某些部分。该菌株将与细菌竞争,并自动重新排列途径基因,以产生最多的青霉素。因此,该项目将为代谢工程提供重要的新合成生物学方法,并揭示基因组和基因组进化基础科学的宝贵新信息。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Synthetic Genome Summer Course.
合成基因组暑期课程。
Burden-driven feedback control of gene expression
  • DOI:
    10.1101/177030
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Francesca Ceroni;Alice Boo;Simone Furini;T. Gorochowski;Olivier Borkowski;Y. Ladak;A. Awan;Charlie Gilbert;G. Stan;T. Ellis
  • 通讯作者:
    Francesca Ceroni;Alice Boo;Simone Furini;T. Gorochowski;Olivier Borkowski;Y. Ladak;A. Awan;Charlie Gilbert;G. Stan;T. Ellis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.087
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira
Patients Undergoing Hip Arthroscopy With Concomitant Periacetabular Osteotomy Demonstrate Clinically Meaningful Improvement at 2 Years Using the Patient-Reported Outcome Measurement Information System and International Hip Outcome Tool 12
接受髋关节镜检查并同时进行髋臼周围截骨术的患者,在使用患者报告的结果测量信息系统和国际髋关节结果工具12评估时,在2年时显示出有临床意义的改善。
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
  • DOI:
    10.1016/j.arthro.2020.12.091
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis
  • 通讯作者:
    Thomas Ellis
strongPodium Presentation Title:/strong Functional Outcomes and Return to Sport for Borderline Dysplasia Patients: Total Hip Arthroscopy vs. Hip Arthroscopy
**讲台展示标题:** 临界发育不良患者的功能结果及恢复运动情况:全髋关节镜检查与髋关节镜检查对比

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
  • 批准号:
    BB/R002614/1
  • 财政年份:
    2018
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Fellowship
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
  • 批准号:
    EP/J021849/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant

相似海外基金

De Montfort University Higher Education Corporation and FABRIC Charitable Incorporated Organisation KTP 23_24 R1
德蒙福特大学高等教育公司和 FABRIC 慈善法人组织 KTP 23_24 R1
  • 批准号:
    10071520
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Knowledge Transfer Partnership
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
  • 批准号:
    MR/Y012089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Robust scaling and self-organisation of the Drosophila anteroposterior axis
果蝇前后轴的稳健缩放和自组织
  • 批准号:
    BB/Y00020X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Beyond broadcasting: Community radio as a model community organisation
超越广播:社区广播作为模范社区组织
  • 批准号:
    DE240100416
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Development of a novel biomaterial model of collagen mediated genetic disease for study of collagen organisation and drug development
开发胶原蛋白介导的遗传病的新型生物材料模型,用于研究胶原蛋白组织和药物开发
  • 批准号:
    2897511
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Studentship
Cheromotherapy relieves pain by neural circuit organisation
化学疗法通过神经回路组织缓解疼痛
  • 批准号:
    23K06825
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predicting psychosis-onset through online assessment of speech organisation
通过在线评估言语组织来预测精神病发作
  • 批准号:
    2886695
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Studentship
Modelling the Impact of the Proposed Newhurst Incinerator on the World Health Organisation (WHO) Urban Health Index (UHI) of Loughborough Town and Uni
模拟拟议的纽赫斯特焚烧厂对拉夫堡镇和大学世界卫生组织 (WHO) 城市健康指数 (UHI) 的影响
  • 批准号:
    2891122
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Studentship
Organisation and regulation of parasitism-associated genomic islands
寄生相关基因组岛的组织和调控
  • 批准号:
    BB/X016676/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了