Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome

迈向基因组设计:构建和测试最小必需染色体

基本信息

  • 批准号:
    BB/R002614/1
  • 负责人:
  • 金额:
    $ 50.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Synthetic biology follows engineering principles to build novel devices, pathways and circuits encoded by modular DNA parts, and more recently has turned to the engineering of entire genomes in living cells. The aim of much of the work of synthetic biology is to design and build cells to perform useful new functions they typically don't perform in nature. To further this field, it is important to engineer the workhorse living cell so that they perform their new tasks reliably and reproducibly. To this end there is significant interest in developing simplified cells built with minimal genomes. Through genome engineering and synthesis, it should be possible to create genomes that do not encode the many genes driving processes unnecessary for the cell to perform its main desired function. The work proposed here aims to accelerate the engineering and synthesis of such minimal genomes, by being the first project to build a working chromosome from just the elements deemed essential to support the cell for its function in the lab. Cells growing with this minimal genome should theoretically be more efficient at performing engineered tasks, such as the biosynthesis of a drug molecule at high yields. Our work will therefore be able to produce specialist strains valuable for use in biotechnology.To achieve this, we plan to use knowledge and tools gained from our work as part of the international Sc2.0 project, which is constructing an entirely synthetic genome for baker's yeast (Saccharomyces cerevisiae). We have just completed construction of one chromosome for this project, which now encodes all 334 genes normally found on its natural counterpart. In this project, we aim to replace this entire chromosome with a much smaller minimal version built-up from modules of DNA that each encode one of the genes from this chromosome deemed essential for cell growth in the lab. To do this we will use system called SCRaMbLE that is hard-coded into the DNA of our recently completed synthetic chromosome. Switching this system on leads to genes unnecessary for growth being automatically lost from the growing cells. Doing this at a large scale with our engineered yeast cells and then genome-sequencing whole populations, should provide us with a rich set of data that tells us which genes are required for growth of the yeast in the lab. With this important new dataset in hand, we will then proceed to building our minimal synthetic chromosome and assessing its ability to replace a full chromosome in growing yeast cells. We plan to measure how cells with the minimal chromosome perform in a variety of conditions and determine whether they can grow and express genes with greater efficiency than normal yeast, now that redundant DNA has been removed. This will generate important new insights for understanding how cells consume resources efficiently and have evolved to encode many non-essential genes on their genomes. It will also give us an opportunity to produce new specialist cells for use in biotechnology, and we plan to test our minimal chromosome yeast for their ability to produce a variety of drug molecules that are valuable for industry and particularly for UK industrial collaborators.
合成生物学遵循工程原理,构建由模块化DNA部分编码的新型装置、通路和电路,最近又转向活细胞中整个基因组的工程。合成生物学的大部分工作的目的是设计和构建细胞,以执行它们在自然界中通常不执行的有用的新功能。为了进一步推进这一领域,重要的是要工程化的主力活细胞,使他们可靠地和可重复地执行他们的新任务。为此,人们对开发用最少的基因组构建的简化细胞非常感兴趣。通过基因组工程和合成,应该可以创建不编码许多基因的基因组,这些基因驱动细胞执行其主要功能所不必要的过程。本文提出的工作旨在加速这种最小基因组的工程和合成,成为第一个仅从被认为对支持细胞在实验室中发挥功能至关重要的元素构建工作染色体的项目。从理论上讲,具有这种最小基因组的细胞在执行工程任务时应该更有效,例如以高产率生物合成药物分子。因此,我们的工作将能够产生在生物技术中有价值的专业菌株。为了实现这一目标,我们计划将从我们的工作中获得的知识和工具作为国际Sc2.0项目的一部分,该项目正在构建面包酵母(酿酒酵母)的完全合成基因组。我们刚刚为这个项目完成了一条染色体的构建,它现在编码了所有334个基因,这些基因通常在其天然对应物上发现。在这个项目中,我们的目标是用一个更小的最小版本来取代整个染色体,这个最小版本是由DNA模块组成的,每个DNA模块编码一个来自这个染色体的基因,这些基因被认为是实验室中细胞生长所必需的。为此,我们将使用一个名为SCRaMbLE的系统,它被硬编码到我们最近完成的合成染色体的DNA中。打开这个系统会导致生长不必要的基因从生长的细胞中自动丢失。用我们的工程酵母细胞大规模地做这件事,然后对整个种群进行基因组测序,应该会为我们提供一组丰富的数据,告诉我们哪些基因是酵母在实验室中生长所必需的。有了这个重要的新数据集,我们将继续构建我们的最小合成染色体,并评估其在生长的酵母细胞中取代完整染色体的能力。我们计划测量具有最小染色体的细胞在各种条件下的表现,并确定它们是否能够以比正常酵母更高的效率生长和表达基因,现在已经去除了多余的DNA。这将产生重要的新见解,以了解细胞如何有效地消耗资源,并进化到编码其基因组上的许多非必需基因。这也将使我们有机会生产用于生物技术的新的专业细胞,我们计划测试我们的最小染色体酵母菌生产各种药物分子的能力,这些药物分子对工业,特别是对英国工业合作者有价值。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Screening microbially produced ?9-tetrahydrocannabinol using a yeast biosensor workflow.
使用酵母生物传感器工作流程筛选微生物产生的 9-四氢大麻酚。
  • DOI:
    10.17863/cam.89822
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaw W
  • 通讯作者:
    Shaw W
Synthetic designs regulating cellular transitions: Fine-tuning of switches and oscillators
  • DOI:
    10.1016/j.coisb.2020.12.002
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zorzan,Irene;Lopez,Alejandra Rojas;Barberis,Matteo
  • 通讯作者:
    Barberis,Matteo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.087
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira
Patients Undergoing Hip Arthroscopy With Concomitant Periacetabular Osteotomy Demonstrate Clinically Meaningful Improvement at 2 Years Using the Patient-Reported Outcome Measurement Information System and International Hip Outcome Tool 12
接受髋关节镜检查并同时进行髋臼周围截骨术的患者,在使用患者报告的结果测量信息系统和国际髋关节结果工具12评估时,在2年时显示出有临床意义的改善。
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
  • DOI:
    10.1016/j.arthro.2020.12.091
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis
  • 通讯作者:
    Thomas Ellis
strongPodium Presentation Title:/strong Functional Outcomes and Return to Sport for Borderline Dysplasia Patients: Total Hip Arthroscopy vs. Hip Arthroscopy
**讲台展示标题:** 临界发育不良患者的功能结果及恢复运动情况:全髋关节镜检查与髋关节镜检查对比

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Fellowship
Genome Organisation for Optimising Synthetic Secondary Metabolism
用于优化合成次级代谢的基因组组织
  • 批准号:
    BB/K006290/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
  • 批准号:
    EP/J021849/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Standard Grant
ProtFunAI: AI based methods for functional annotation of proteins in crop genomes
ProtFunAI:基于人工智能的作物基因组蛋白质功能注释方法
  • 批准号:
    BB/Y514044/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
Recovering evolutionary drivers of malarial parasites - leveraging genomes past and present
恢复疟疾寄生虫的进化驱动因素——利用过去和现在的基因组
  • 批准号:
    MR/X034828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Fellowship
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328118
  • 财政年份:
    2024
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Standard Grant
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
  • 批准号:
    NE/Y003519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Research Grant
Development of a haplotype-aware structural variant analysis method for polyploid genomes
开发多倍体基因组的单倍型感知结构变异分析方法
  • 批准号:
    23K19338
  • 财政年份:
    2023
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developing technologies that increase recombination in crop potato genomes
开发增加农作物马铃薯基因组重组的技术
  • 批准号:
    BB/Y513441/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.23万
  • 项目类别:
    Training Grant
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
  • 批准号:
    10891050
  • 财政年份:
    2023
  • 资助金额:
    $ 50.23万
  • 项目类别:
Integrative analysis of whole genomes and transcriptomes from multiple cell types in rare disease patients
罕见病患者多种细胞类型的全基因组和转录组的综合分析
  • 批准号:
    10587683
  • 财政年份:
    2023
  • 资助金额:
    $ 50.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了