Engineered burden-based feedback for robust and optimised synthetic biology

工程化的基于负荷的反馈,用于稳健和优化的合成生物学

基本信息

  • 批准号:
    EP/J021849/1
  • 负责人:
  • 金额:
    $ 55.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Synthetic biology is an exciting new subject that is accelerating the research and development of new biotechnologies by rigorously applying engineering design principles to the way we work with biological systems. The most prominent application of synthetic biology is the rational modification and redesign of living organisms like microbes for new efficient use in sectors such as energy production, biomedicine, drug production and food technology. Crucial to developing and applying synthetic biology is the rigorous quantification, modelling, analysis and control of the synthetic biology designs. By using this engineering framework we aim to be able to reliably predict and robustly control how engineered biological systems will operate.Although synthetic biology has had numerous successes in research, it is still difficult to predict how engineered cells behave when new synthetic genetic information is added to these host cells. One of the major reasons for this is that new synthetic genes add an as-yet unquantified burden to cells, particularly to commonly used microbes like E. coli. This burden effect is due to the new genes requiring resources to be maintained and function. This means that the introduced genes take resources away from those needed by their host cell in order to grow and survive. Usually the result of this is the unpredictable failure of the synthetic biology design to behave as expected or the creation of designs that only function in a narrow set of ideal conditions.The work proposed in this project seeks to address and make use of the understudied effect of synthetic biology we know as burden. To achieve this goal, we will use novel genetic tools to quantify the effect of burden for several typical synthetic biology devices and do this work in the well-characterised microbe E. coli so that our results are useful to the many researchers who work with this model organism. To see how the cell naturally reacts to burden we will use the high-resolution tool of RNA sequencing to quantify the gene expression changes that a cell triggers when it is burdened. Quantified burden combined with the quantified gene expression changes in response to burden will together give us crucial data that can be used to build a mathematical model of how a cell reacts to new synthetic genes being added and used. This model will allow future applications of synthetic biology to predict how synthetic systems will interact with their host cells and therefore open the door for rigorous optimisation of the robustness/performance compromise inherent to any control engineering design. It will also allow for a new generation of synthetic biology devices that automatically account for the burden effect. To demonstrate this final point, this project will use our quantified understanding of burden to engineer novel synthetic plasmid vectors that are designed to auto-regulate their copy number via feedback mechanisms that take into account burden, thereby serving as general purpose burden-based controllers. We will show how these plasmid systems work by building and testing a self-regulating biological nightlight that emits bioluminescence in the dark without any significant loss in growth. The new plasmid systems we generate will be extremely valuable for synthetic biology as they will allow synthetic devices and systems to respond directly to cell health thereby endowing them with the robust and predictable behaviours needed for future applications in health, energy and biosensing.
合成生物学是一个令人兴奋的新主题,正在通过严格将工程设计原理应用于我们与生物系统的方式中,从而加速了新生物技术的研究和开发。合成生物学的最突出的应用是,在能源生产,生物医学,药物生产和食品技术等领域的新有效利用中,像微生物(如微生物)的合理修饰和重新设计。对于合成生物学设计的严格定量,建模,分析和控制,对于发展和应用合成生物学至关重要。通过使用该工程框架,我们旨在能够可靠地预测和稳健地控制工程生物学系统的运作方式。尽管合成生物学在研究方面取得了许多成功,但仍然很难预测何时将新的合成遗传信息添加到这些宿主细胞中。造成这种情况的主要原因之一是,新的合成基因为细胞增加了尚未量化的负担,尤其是对大肠杆菌等常用微生物。这种负担效应是由于新基因需要维护资源和运作。这意味着引入的基因将资源从其宿主细胞所需的资源中夺走,以生长和生存。通常,结果是合成生物学设计的不可预测的失败,其表现为预期,或者创建仅在狭窄的理想条件下运作的设计。该项目提出的工作旨在解决和利用合成生物学的被忽视效应,我们知道我们称为负担。为了实现这一目标,我们将使用新颖的遗传工具来量化对几种典型合成生物学设备的负担的效果,并在特征良好的微生物大肠杆菌中进行这项工作,以使我们的结果对许多与该模型生物体一起工作的研究人员有用。为了了解细胞对负担的自然反应,我们将使用RNA测序的高分辨率工具来量化细胞在负担时触发的基因表达变化。量化的负担与量化的基因表达对负担的响应相结合将为我们提供重要的数据,可用于构建细胞对新合成基因的反应和使用的新合成基因的反应。该模型将允许合成生物学的将来的应用预测合成系统将如何与宿主细胞相互作用,因此为任何控制工程设计固有的稳健性/性能折衷打开了大门。它还将允许新一代的合成生物学设备自动解释负担效果。为了证明这一点,该项目将利用我们对负担的量化理解来工程师新颖的合成质粒向量,这些质粒载体旨在通过考虑负担的反馈机制自动调节其拷贝数,从而充当基于通用负担的控制器。我们将通过构建和测试自我调节的生物夜灯来展示这些质粒系统如何工作,该夜灯在黑暗中发出生物发光而没有任何显着的生长损失。我们生成的新质粒系统对于合成生物学将非常有价值,因为它们将允许合成设备和系统直接对细胞健康做出反应,从而赋予它们在健康,能源和生物效率上的未来应用所需的强大和可预测的行为。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Overloaded and stressed: whole-cell considerations for bacterial synthetic biology
  • DOI:
    10.1016/j.mib.2016.07.009
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Borkowski, Olivier;Ceroni, Francesca;Ellis, Tom
  • 通讯作者:
    Ellis, Tom
Burden-driven feedback control of gene expression
  • DOI:
    10.1101/177030
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Francesca Ceroni;Alice Boo;Simone Furini;T. Gorochowski;Olivier Borkowski;Y. Ladak;A. Awan;Charlie Gilbert;G. Stan;T. Ellis
  • 通讯作者:
    Francesca Ceroni;Alice Boo;Simone Furini;T. Gorochowski;Olivier Borkowski;Y. Ladak;A. Awan;Charlie Gilbert;G. Stan;T. Ellis
Modelling the burden caused by gene expression: an in silico investigation into the interactions between synthetic gene circuits and their chassis cell
模拟基因表达引起的负担:对合成基因电路与其底盘细胞之间相互作用的计算机研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Algar R Algar
  • 通讯作者:
    Algar R Algar
Modelling essential interactions between synthetic genes and their chassis cell
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.087
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
  • DOI:
    10.1016/j.arthro.2020.12.091
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis
  • 通讯作者:
    Thomas Ellis
Synchrotron FTIR as a tool for studying populations and individual living cells of green algae
同步加速器 FTIR 作为研究绿藻种群和个体活细胞的工具
  • DOI:
    10.1101/808220
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kira L. Goff;Thomas Ellis;K. Wilson
  • 通讯作者:
    K. Wilson
Iliopsoas Pathology: Game-changing Findings from a Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.115
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
  • 批准号:
    BB/R002614/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Fellowship
Genome Organisation for Optimising Synthetic Secondary Metabolism
用于优化合成次级代谢的基因组组织
  • 批准号:
    BB/K006290/1
  • 财政年份:
    2013
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant

相似国自然基金

政策工具、行政负担与合作生产:理论框架及基于多领域公共服务的实证研究
  • 批准号:
    72374199
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于老年慢性乙肝患者共病模式构建疾病负担动态变化预测模型
  • 批准号:
    82304246
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于贝叶斯框架的阿尔茨海默病伤残负担定量及风险评估方法学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于贝叶斯降维与可解释机器学习混合模型的肥胖与全球疾病负担研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于贝叶斯降维与可解释机器学习混合模型的肥胖与全球疾病负担研究
  • 批准号:
    82273731
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10836095
  • 财政年份:
    2023
  • 资助金额:
    $ 55.68万
  • 项目类别:
Novel bioreducible polymer-based delivery platform for intravitreal gene transfer to retina
用于玻璃体内基因转移至视网膜的新型生物可还原聚合物递送平台
  • 批准号:
    10573812
  • 财政年份:
    2023
  • 资助金额:
    $ 55.68万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10477028
  • 财政年份:
    2021
  • 资助金额:
    $ 55.68万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10301702
  • 财政年份:
    2021
  • 资助金额:
    $ 55.68万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10703623
  • 财政年份:
    2021
  • 资助金额:
    $ 55.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了