Genomic predictions of mastitis resistance in dairy goats using computational genomics
使用计算基因组学对奶山羊乳腺炎抵抗力进行基因组预测
基本信息
- 批准号:BB/M02833X/1
- 负责人:
- 金额:$ 34.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses the key challenges facing dairy goat milk production by using new genetic and genomic technologies to improve the quality of milk production and disease management. The main challenge is to breed healthy goats with resistance to bacterial infections leading to mastitis, and to identify sires with daughters that have lower susceptibility to mastitis and generate genomic predictions of merit for this trait. The wider goat industry in the UK and abroad will access genomic predictions of enhanced mastitis resistance via new molecular technology from the creatipon of a low density (LD), lower cost customised single nucleotide polymorphism (SNP) array for UK goats. This allows for the use of more cost-effective molecular technology to predict ('impute') the information that was previously generated by the more expensive, more comprehensive SNP array and enabling more animals to be genotyped. The project will ensure sustainable breeding objectives for dairy goats in the long-term, by including routine collection of mastitis records as indicators of health and longevity, thereby helping to translate previous TSB-funded research into practice.It is estimated that mastitis affects up to a third of all UK dairy goats during their reproductive life. Even thoughthis hasn't been formally quantified in the UK, we anticipate that YDG loses around £286K p.a. in lost productivity and additional replacement costs. Mastitis is termed a 'complex trait' in animal breeding terms, i.e. whereby many genes are involved in determining whether or not animals succumb to clinical (or subclinical) disease. For this reason, using well recorded goats, the overall aim of the project is to generate genetic (EBV) and genomic (GEBV) breeding values that will identify genetically more resistant animals to mastitis, irrespective of the causative organisms. Such approach is in line with the EU regulations, which are aiming to restrict the use of active compounds to control agricultural diseases, which increases the risk of pathogens developing resistance to current biological and chemical control measures. Breeding of animals with increased disease resistance and thus improved health will allow the animals to better realise their genetic potential for milk production. The use of EBVs and GEBVs will allow for accurate elimination of animals with high susceptibility to mastitis, thus acting as a measure of early identification of potential disease. This proposal is a collaborative project that will stimulate the production of high quality goat milk in the UK. This will be done through the exploitation of new genomic technology (a low-density (LD), single nucleotide polymorphism, (SNP) array that is tailored to UK goat breeds), to identify high genetic and genomic merit dairy goats for mastitis resistance, functional fitness, health, and longevity, whilst attaining high levels of milk production. This will result in a balanced breeding programme, which is necessary for sustainable intensification of goat milk production. The challenge is for the UK goat milk industry to become a leading international player in the supply of high genetic merit livestock for milk production, whilst building a reputation for the supply of animals of high disease resistance. The identification of sires with daughters with high mastitis resistance will greatly reduce losses due to veterinary costs and decreased milk supply. Breeding of goats with increased resistance for mastitis will become a unique selling point for the industrial partner. The routine inclusion of mastitis phenotyping for the goat selection index is likely to improve mastitis resistance, in a similar way to that which has recently occurred for fertility in the dairy cattle, initiated by the uptake of the new dairy fertility index.
该项目通过使用新的遗传和基因组技术来提高牛奶生产和疾病管理的质量,解决奶山羊牛奶生产面临的主要挑战。主要的挑战是培育健康的山羊,对导致乳腺炎的细菌感染具有抵抗力,并确定具有较低乳腺炎易感性的女儿的父系,并生成该性状的基因组预测。英国和国外更广泛的山羊产业将通过新的分子技术获得增强的乳腺炎抗性的基因组预测,从英国山羊的低密度(LD),低成本定制单核苷酸多态性(SNP)阵列的创建。这允许使用更具成本效益的分子技术来预测(“估算”)先前由更昂贵、更全面的SNP阵列产生的信息,并使更多的动物能够被基因分型。该项目将确保奶山羊的长期可持续育种目标,包括常规收集乳腺炎记录作为健康和寿命的指标,从而帮助将先前TSB资助的研究转化为实践。据估计,乳腺炎影响了英国所有奶山羊的三分之一。尽管这在英国还没有正式量化,但我们预计YDG每年损失约28.6万英镑。损失的生产力和额外的更换成本。乳腺炎在动物育种术语中被称为“复杂性状”,即,许多基因参与决定动物是否屈服于临床(或亚临床)疾病。出于这个原因,使用记录良好的山羊,该项目的总体目标是产生遗传(EBV)和基因组(GEBV)育种值,将识别遗传上对乳腺炎更具抗性的动物,无论致病生物体如何。这种方法符合欧盟法规,该法规旨在限制使用活性化合物控制农业疾病,这增加了病原体对当前生物和化学控制措施产生抗药性的风险。提高动物的抗病能力,从而改善健康状况,将使动物更好地实现其产奶的遗传潜力。EBV和GEBV的使用将允许准确消除对乳腺炎具有高易感性的动物,从而作为早期识别潜在疾病的措施。这是一个合作项目,将刺激英国高品质羊奶的生产。这将通过利用新的基因组技术(低密度(LD),单核苷酸多态性(SNP)阵列,是专门为英国山羊品种),以确定高遗传和基因组价值奶山羊乳腺炎抗性,功能健身,健康和长寿,同时达到高水平的牛奶产量。这将导致一个平衡的育种计划,这是羊奶生产可持续集约化所必需的。英国羊奶行业面临的挑战是成为供应高遗传价值牲畜的国际领先者,同时建立高抗病动物供应的声誉。对具有高乳腺炎抗性的子代的公畜进行鉴定将大大减少兽医费用和牛奶供应减少造成的损失。培育对乳腺炎具有更高抵抗力的山羊将成为工业合作伙伴的独特卖点。常规纳入乳腺炎表型的山羊选择指数可能会提高乳腺炎的抗性,以类似的方式,最近发生的奶牛生育力,开始吸收新的奶牛生育力指数。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pseudopregnancy and aseasonal breeding in dairy goats: genetic basis of fertility and impact on lifetime productivity.
奶山羊的假妊娠和非季节性繁殖:生育力的遗传基础及其对终生生产力的影响。
- DOI:10.1017/s1751731117003056
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Desire S
- 通讯作者:Desire S
New mastitis phenotypes suitable for genomic selection in meat sheep and their genetic relationships with udder conformation and lamb live weights
适合肉羊基因组选择的新乳腺炎表型及其与乳房构象和羔羊活重的遗传关系
- DOI:10.1017/s1751731118000393
- 发表时间:2018
- 期刊:
- 影响因子:3.6
- 作者:McLaren A
- 通讯作者:McLaren A
Including genotypic information in genetic evaluations increases the accuracy of sheep breeding values
- DOI:10.1111/jbg.12771
- 发表时间:2023-04-01
- 期刊:
- 影响因子:2.6
- 作者:Kaseja, Karolina;Mucha, Sebastian;Conington, Joanne
- 通讯作者:Conington, Joanne
Genomic application in sheep and goat breeding
- DOI:10.2527/af.2016-0006
- 发表时间:2016-01-01
- 期刊:
- 影响因子:3.6
- 作者:Rupp, Rachel;Mucha, Sebastian;Conington, Joanne
- 通讯作者:Conington, Joanne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joanne Conington其他文献
Joanne Conington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joanne Conington', 18)}}的其他基金
Portable Accumulation Chambers to measure greenhouse gas emissions in sheep
用于测量绵羊温室气体排放的便携式累积室
- 批准号:
BB/V019279/1 - 财政年份:2021
- 资助金额:
$ 34.01万 - 项目类别:
Research Grant
Exploitation of genomic technologies for sustainable intensification of dairy goats
利用基因组技术实现奶山羊可持续集约化
- 批准号:
BB/M027570/1 - 财政年份:2015
- 资助金额:
$ 34.01万 - 项目类别:
Research Grant
14-ATC2. Using genomic technologies to reduce mastitis in meat sheep
14-ATC2。
- 批准号:
BB/M018377/1 - 财政年份:2015
- 资助金额:
$ 34.01万 - 项目类别:
Research Grant
相似海外基金
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
- 批准号:
DE240100327 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Discovery Early Career Researcher Award
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
- 批准号:
MR/X033139/1 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Fellowship
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
- 批准号:
DP240100269 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Discovery Projects
Mud pumping under rail tracks: from Micromechanics to Predictions
铁轨下的泥浆泵送:从微观力学到预测
- 批准号:
DP240102765 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Discovery Projects
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
- 批准号:
2330628 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
CAREER: Harnessing Emergent Simplicity for High-Precision Predictions in High-Diversity Microbial Ecosystems
职业:利用新兴的简单性在高多样性微生物生态系统中进行高精度预测
- 批准号:
2340791 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Continuing Grant
Collaborative Research: ORCC: Integrated mechanistic predictions of ecological and evolutionary responses to increasing aridity across the range of an iconic species
合作研究:ORCC:对标志性物种范围内日益干旱的生态和进化反应的综合机制预测
- 批准号:
2307792 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
Neural circuitry of predictions and prediction errors in the auditory system
听觉系统中预测和预测误差的神经回路
- 批准号:
23K14298 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists